GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION

For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dicho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2017-07, Vol.37 (4), p.941-948
1. Verfasser: 杨凌燕 李晓光 吴永洪 Louis CA CCETTA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 4
container_start_page 941
container_title Acta mathematica scientia
container_volume 37
creator 杨凌燕 李晓光 吴永洪 Louis CA CCETTA
description For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).
doi_str_mv 10.1016/S0252-9602(17)30049-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201704004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672895398</cqvip_id><wanfj_id>sxwlxb_e201704004</wanfj_id><els_id>S0252960217300498</els_id><sourcerecordid>sxwlxb_e201704004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-64c325995ea2f083b0524c73c717f4a72f6eb306a8e315dac9e9fac4d5ced4253</originalsourceid><addsrcrecordid>eNqFUEtPwjAcb4wmIvoRTBZPcpj2sa6rFzOgPJKFIRvh2JTS4QhuuqHgt7c89Orpn_zzewNwi-ADgsh_TCCm2OU-xPeItQiEHneDM9BAlNk3DNg5aPxBLsFVXa-g5WHfa4CnfhS3w8iZiShyx3EiuiORJE446jrtKJ6507HTiydOOhDOIJykEyEc8TIN02E8ugYXmVrX5uZ0m2DaE2ln4EZxf9gJI1cTBjeu72mCKefUKJzBgMwhxZ5mRDPEMk8xnPlmTqCvAkMQXSjNDc-U9hZUm4WHKWmC1lF3q4pMFUu5Kj-rwjrKerdd7-bSYIgY9Gxvi6VHrK7Kuq5MJt-r_E1V3xJBuR9LHsaS-yUkYvIwlgws7_nIM7bIV24qWevcFDZBXhm9kYsy_1fh7uT8WhbLj9zm_LX2GQ44JTwgP_23df0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</creator><creatorcontrib>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</creatorcontrib><description>For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(17)30049-8</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>35J10 ; 35Q55 ; blow-up solution ; Hartree equation ; Threshold criteria ; 二分法 ; 基态 ; 整体存在 ; 整体适定性 ; 方程 ; 柯西问题 ; 爆破</subject><ispartof>Acta mathematica scientia, 2017-07, Vol.37 (4), p.941-948</ispartof><rights>2017 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-64c325995ea2f083b0524c73c717f4a72f6eb306a8e315dac9e9fac4d5ced4253</citedby><cites>FETCH-LOGICAL-c370t-64c325995ea2f083b0524c73c717f4a72f6eb306a8e315dac9e9fac4d5ced4253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(17)30049-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</creatorcontrib><title>GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).</description><subject>35J10</subject><subject>35Q55</subject><subject>blow-up solution</subject><subject>Hartree equation</subject><subject>Threshold criteria</subject><subject>二分法</subject><subject>基态</subject><subject>整体存在</subject><subject>整体适定性</subject><subject>方程</subject><subject>柯西问题</subject><subject>爆破</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUEtPwjAcb4wmIvoRTBZPcpj2sa6rFzOgPJKFIRvh2JTS4QhuuqHgt7c89Orpn_zzewNwi-ADgsh_TCCm2OU-xPeItQiEHneDM9BAlNk3DNg5aPxBLsFVXa-g5WHfa4CnfhS3w8iZiShyx3EiuiORJE446jrtKJ6507HTiydOOhDOIJykEyEc8TIN02E8ugYXmVrX5uZ0m2DaE2ln4EZxf9gJI1cTBjeu72mCKefUKJzBgMwhxZ5mRDPEMk8xnPlmTqCvAkMQXSjNDc-U9hZUm4WHKWmC1lF3q4pMFUu5Kj-rwjrKerdd7-bSYIgY9Gxvi6VHrK7Kuq5MJt-r_E1V3xJBuR9LHsaS-yUkYvIwlgws7_nIM7bIV24qWevcFDZBXhm9kYsy_1fh7uT8WhbLj9zm_LX2GQ44JTwgP_23df0</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</creator><general>Elsevier Ltd</general><general>Sichuan Normal University,Chengdu,610066,China%Sichuan Normal University,Chengdu,610066,China</general><general>Wuhan Institute of Physics and Machematics Chinese Academy of Science,Wuhan 430071,China%Department of Mathematics and Statistics,Curtin University of Technology,Perth,WA 6845,Australia</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170701</creationdate><title>GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION</title><author>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-64c325995ea2f083b0524c73c717f4a72f6eb306a8e315dac9e9fac4d5ced4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>35J10</topic><topic>35Q55</topic><topic>blow-up solution</topic><topic>Hartree equation</topic><topic>Threshold criteria</topic><topic>二分法</topic><topic>基态</topic><topic>整体存在</topic><topic>整体适定性</topic><topic>方程</topic><topic>柯西问题</topic><topic>爆破</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨凌燕 李晓光 吴永洪 Louis CA CCETTA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>37</volume><issue>4</issue><spage>941</spage><epage>948</epage><pages>941-948</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(17)30049-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2017-07, Vol.37 (4), p.941-948
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201704004
source Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection
subjects 35J10
35Q55
blow-up solution
Hartree equation
Threshold criteria
二分法
基态
整体存在
整体适定性
方程
柯西问题
爆破
title GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLOBAL%20WELL-POSEDNESS%20AND%20BLOW-UP%20FOR%20THE%20HARTREE%20EQUATION&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E6%9D%A8%E5%87%8C%E7%87%95%20%E6%9D%8E%E6%99%93%E5%85%89%20%E5%90%B4%E6%B0%B8%E6%B4%AA%20Louis%20CA%20CCETTA&rft.date=2017-07-01&rft.volume=37&rft.issue=4&rft.spage=941&rft.epage=948&rft.pages=941-948&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(17)30049-8&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201704004%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=672895398&rft_wanfj_id=sxwlxb_e201704004&rft_els_id=S0252960217300498&rfr_iscdi=true