GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL
This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinit...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2017, Vol.37 (1), p.58-68 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | Acta mathematica scientia |
container_volume | 37 |
creator | 向长林 |
description | This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity. |
doi_str_mv | 10.1016/S0252-9602(16)30115-1 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201701005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671334346</cqvip_id><wanfj_id>sxwlxb_e201701005</wanfj_id><els_id>S0252960216301151</els_id><sourcerecordid>sxwlxb_e201701005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlOUTkCxOcAjMJLHTnlBoQ2spNCVxqThZbuKUIEghYf173Ba4chrN01tmHiFHCGcIyM8zcJnr9Di4J8hPPUBkDm6RDrLAwtANtknnj7JL9tr2AazO5X6HtMM0HIhoLGmUSXEdyiijV0lKsySeSpGMMyoTejMNMxGLcRSmNIpjMZGiTyOLbhgzIUe0nwqLhrFVXiZxdEuHaTKzeDge0FGYDu7oJJE2R4TxAdkp9WNrDn_mPpleRbI_cuJkuLJwch-DV4d155izHsw174LPXW3Q5KVmLvowx9IAM6hd1EXRZR6ynGPQg54faChZ6UPh7ZPTje-HrktdL9TD8q2pbaJqPz8eP-fKuIABIACzXLbh5s2ybRtTquemetLNl0JQq5bVumW1qlDZbd2yQqu72OiMfeS9Mo1q88rUuSmqxuSvqlhW_zoc_yTfL-vFS2Xv_I3mAXqe7_nc-wZ324WY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>向长林</creator><creatorcontrib>向长林</creatorcontrib><description>This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(16)30115-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>35B33 ; 35J60 ; gradient estimate ; Hardy ; Hardy's inequality ; quasilinear elliptic equations ; Sobolev ; 临界 ; 拟线性椭圆型方程 ; 拟线性椭圆方程 ; 无穷远 ; 最优解 ; 梯度估计</subject><ispartof>Acta mathematica scientia, 2017, Vol.37 (1), p.58-68</ispartof><rights>2017 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</citedby><cites>FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960216301151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>向长林</creatorcontrib><title>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.</description><subject>35B33</subject><subject>35J60</subject><subject>gradient estimate</subject><subject>Hardy</subject><subject>Hardy's inequality</subject><subject>quasilinear elliptic equations</subject><subject>Sobolev</subject><subject>临界</subject><subject>拟线性椭圆型方程</subject><subject>拟线性椭圆方程</subject><subject>无穷远</subject><subject>最优解</subject><subject>梯度估计</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlOUTkCxOcAjMJLHTnlBoQ2spNCVxqThZbuKUIEghYf173Ba4chrN01tmHiFHCGcIyM8zcJnr9Di4J8hPPUBkDm6RDrLAwtANtknnj7JL9tr2AazO5X6HtMM0HIhoLGmUSXEdyiijV0lKsySeSpGMMyoTejMNMxGLcRSmNIpjMZGiTyOLbhgzIUe0nwqLhrFVXiZxdEuHaTKzeDge0FGYDu7oJJE2R4TxAdkp9WNrDn_mPpleRbI_cuJkuLJwch-DV4d155izHsw174LPXW3Q5KVmLvowx9IAM6hd1EXRZR6ynGPQg54faChZ6UPh7ZPTje-HrktdL9TD8q2pbaJqPz8eP-fKuIABIACzXLbh5s2ybRtTquemetLNl0JQq5bVumW1qlDZbd2yQqu72OiMfeS9Mo1q88rUuSmqxuSvqlhW_zoc_yTfL-vFS2Xv_I3mAXqe7_nc-wZ324WY</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>向长林</creator><general>Elsevier Ltd</general><general>Department of Mathematics and Statistics,University of Jyvaskyla,P.O.Box 35,FI-40014 University of Jyvaskyla,Finland</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</title><author>向长林</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>35B33</topic><topic>35J60</topic><topic>gradient estimate</topic><topic>Hardy</topic><topic>Hardy's inequality</topic><topic>quasilinear elliptic equations</topic><topic>Sobolev</topic><topic>临界</topic><topic>拟线性椭圆型方程</topic><topic>拟线性椭圆方程</topic><topic>无穷远</topic><topic>最优解</topic><topic>梯度估计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>向长林</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>向长林</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2017</date><risdate>2017</risdate><volume>37</volume><issue>1</issue><spage>58</spage><epage>68</epage><pages>58-68</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(16)30115-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2017, Vol.37 (1), p.58-68 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201701005 |
source | Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection |
subjects | 35B33 35J60 gradient estimate Hardy Hardy's inequality quasilinear elliptic equations Sobolev 临界 拟线性椭圆型方程 拟线性椭圆方程 无穷远 最优解 梯度估计 |
title | GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRADIENT%20ESTIMATES%20FOR%20SOLUTIONS%20TO%20QUASILINEAR%20ELLIPTIC%20EQUATIONS%20WITH%20CRITICAL%20SOBOLEV%20GROWTH%20AND%20HARDY%20POTENTIAL&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E5%90%91%E9%95%BF%E6%9E%97&rft.date=2017&rft.volume=37&rft.issue=1&rft.spage=58&rft.epage=68&rft.pages=58-68&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(16)30115-1&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201701005%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=671334346&rft_wanfj_id=sxwlxb_e201701005&rft_els_id=S0252960216301151&rfr_iscdi=true |