GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL

This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2017, Vol.37 (1), p.58-68
1. Verfasser: 向长林
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 58
container_title Acta mathematica scientia
container_volume 37
creator 向长林
description This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.
doi_str_mv 10.1016/S0252-9602(16)30115-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201701005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671334346</cqvip_id><wanfj_id>sxwlxb_e201701005</wanfj_id><els_id>S0252960216301151</els_id><sourcerecordid>sxwlxb_e201701005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlOUTkCxOcAjMJLHTnlBoQ2spNCVxqThZbuKUIEghYf173Ba4chrN01tmHiFHCGcIyM8zcJnr9Di4J8hPPUBkDm6RDrLAwtANtknnj7JL9tr2AazO5X6HtMM0HIhoLGmUSXEdyiijV0lKsySeSpGMMyoTejMNMxGLcRSmNIpjMZGiTyOLbhgzIUe0nwqLhrFVXiZxdEuHaTKzeDge0FGYDu7oJJE2R4TxAdkp9WNrDn_mPpleRbI_cuJkuLJwch-DV4d155izHsw174LPXW3Q5KVmLvowx9IAM6hd1EXRZR6ynGPQg54faChZ6UPh7ZPTje-HrktdL9TD8q2pbaJqPz8eP-fKuIABIACzXLbh5s2ybRtTquemetLNl0JQq5bVumW1qlDZbd2yQqu72OiMfeS9Mo1q88rUuSmqxuSvqlhW_zoc_yTfL-vFS2Xv_I3mAXqe7_nc-wZ324WY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>向长林</creator><creatorcontrib>向长林</creatorcontrib><description>This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(16)30115-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>35B33 ; 35J60 ; gradient estimate ; Hardy ; Hardy's inequality ; quasilinear elliptic equations ; Sobolev ; 临界 ; 拟线性椭圆型方程 ; 拟线性椭圆方程 ; 无穷远 ; 最优解 ; 梯度估计</subject><ispartof>Acta mathematica scientia, 2017, Vol.37 (1), p.58-68</ispartof><rights>2017 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</citedby><cites>FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960216301151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>向长林</creatorcontrib><title>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.</description><subject>35B33</subject><subject>35J60</subject><subject>gradient estimate</subject><subject>Hardy</subject><subject>Hardy's inequality</subject><subject>quasilinear elliptic equations</subject><subject>Sobolev</subject><subject>临界</subject><subject>拟线性椭圆型方程</subject><subject>拟线性椭圆方程</subject><subject>无穷远</subject><subject>最优解</subject><subject>梯度估计</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlOUTkCxOcAjMJLHTnlBoQ2spNCVxqThZbuKUIEghYf173Ba4chrN01tmHiFHCGcIyM8zcJnr9Di4J8hPPUBkDm6RDrLAwtANtknnj7JL9tr2AazO5X6HtMM0HIhoLGmUSXEdyiijV0lKsySeSpGMMyoTejMNMxGLcRSmNIpjMZGiTyOLbhgzIUe0nwqLhrFVXiZxdEuHaTKzeDge0FGYDu7oJJE2R4TxAdkp9WNrDn_mPpleRbI_cuJkuLJwch-DV4d155izHsw174LPXW3Q5KVmLvowx9IAM6hd1EXRZR6ynGPQg54faChZ6UPh7ZPTje-HrktdL9TD8q2pbaJqPz8eP-fKuIABIACzXLbh5s2ybRtTquemetLNl0JQq5bVumW1qlDZbd2yQqu72OiMfeS9Mo1q88rUuSmqxuSvqlhW_zoc_yTfL-vFS2Xv_I3mAXqe7_nc-wZ324WY</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>向长林</creator><general>Elsevier Ltd</general><general>Department of Mathematics and Statistics,University of Jyvaskyla,P.O.Box 35,FI-40014 University of Jyvaskyla,Finland</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</title><author>向长林</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-58b1c590ba680462ae1ecfa52140b1fe05e1a21add85315c61790947a0f5f40d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>35B33</topic><topic>35J60</topic><topic>gradient estimate</topic><topic>Hardy</topic><topic>Hardy's inequality</topic><topic>quasilinear elliptic equations</topic><topic>Sobolev</topic><topic>临界</topic><topic>拟线性椭圆型方程</topic><topic>拟线性椭圆方程</topic><topic>无穷远</topic><topic>最优解</topic><topic>梯度估计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>向长林</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>向长林</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2017</date><risdate>2017</risdate><volume>37</volume><issue>1</issue><spage>58</spage><epage>68</epage><pages>58-68</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(16)30115-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2017, Vol.37 (1), p.58-68
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201701005
source Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection
subjects 35B33
35J60
gradient estimate
Hardy
Hardy's inequality
quasilinear elliptic equations
Sobolev
临界
拟线性椭圆型方程
拟线性椭圆方程
无穷远
最优解
梯度估计
title GRADIENT ESTIMATES FOR SOLUTIONS TO QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH AND HARDY POTENTIAL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRADIENT%20ESTIMATES%20FOR%20SOLUTIONS%20TO%20QUASILINEAR%20ELLIPTIC%20EQUATIONS%20WITH%20CRITICAL%20SOBOLEV%20GROWTH%20AND%20HARDY%20POTENTIAL&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E5%90%91%E9%95%BF%E6%9E%97&rft.date=2017&rft.volume=37&rft.issue=1&rft.spage=58&rft.epage=68&rft.pages=58-68&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(16)30115-1&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201701005%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=671334346&rft_wanfj_id=sxwlxb_e201701005&rft_els_id=S0252960216301151&rfr_iscdi=true