MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN
In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the p...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2016-11, Vol.36 (6), p.1793-1803 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1803 |
---|---|
container_issue | 6 |
container_start_page | 1793 |
container_title | Acta mathematica scientia |
container_volume | 36 |
creator | 许勇强 谭忠 孙道恒 |
description | In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ. |
doi_str_mv | 10.1016/S0252-9602(16)30106-0 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201606017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670752073</cqvip_id><wanfj_id>sxwlxb_e201606017</wanfj_id><els_id>S0252960216301060</els_id><sourcerecordid>sxwlxb_e201606017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-3e808c1e9e85441fdf697d0eb8a595bb5384b238ff49c06b588023a58bbe58473</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIFmc4BBYx7HjnFCI0mLJTao0IDhZSeqUIEgh4fn3uA-4clrNamZnZxA6JnBOgPCLGbjMdQIO7inhZxQIcAd20IAw365B-Lto8EfZRwd9_whW53JvgO4mNyqXUyUjmd_jLJ5ZOMOjNMMhTtJEySQOMxwrJae5jPA0S69UPMEyuU3VrUzGOL-O8SgLo1ymSaiwCqcqjGSYHKK9unjqzdF2DtHNKM6ja0elYxmFyqmoD28ONQJERUxgBPM8Us9rHvhzMKUoWMDKklHhlS4Vde0FFfCSCQEuLZgoS8OE59MhOtvc_SzaumgX-nH53rXWUfdfn09fpTauzQocyIrLNtyqW_Z9Z2r90jXPRfetCehVlXpdpV71pC1aV6nB6i43OmODfDSm033VmLYy86Yz1ZueL5t_L5xsnR-W7eK1sX_-WnMffOaCT-kPC8J-Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>许勇强 谭忠 孙道恒</creator><creatorcontrib>许勇强 谭忠 孙道恒</creatorcontrib><description>In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(16)30106-0</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>35J99 ; 45E10 ; 45G05 ; asymptotic ; existence ; fractional Laplacian ; Laplacian ; Sobolev trace inequality ; 分数阶 ; 变号解 ; 多重性 ; 扩展方法 ; 拉普拉斯 ; 有界域 ; 非线性椭圆问题</subject><ispartof>Acta mathematica scientia, 2016-11, Vol.36 (6), p.1793-1803</ispartof><rights>2016 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-3e808c1e9e85441fdf697d0eb8a595bb5384b238ff49c06b588023a58bbe58473</citedby><cites>FETCH-LOGICAL-c370t-3e808c1e9e85441fdf697d0eb8a595bb5384b238ff49c06b588023a58bbe58473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(16)30106-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>许勇强 谭忠 孙道恒</creatorcontrib><title>MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ.</description><subject>35J99</subject><subject>45E10</subject><subject>45G05</subject><subject>asymptotic</subject><subject>existence</subject><subject>fractional Laplacian</subject><subject>Laplacian</subject><subject>Sobolev trace inequality</subject><subject>分数阶</subject><subject>变号解</subject><subject>多重性</subject><subject>扩展方法</subject><subject>拉普拉斯</subject><subject>有界域</subject><subject>非线性椭圆问题</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIFmc4BBYx7HjnFCI0mLJTao0IDhZSeqUIEgh4fn3uA-4clrNamZnZxA6JnBOgPCLGbjMdQIO7inhZxQIcAd20IAw365B-Lto8EfZRwd9_whW53JvgO4mNyqXUyUjmd_jLJ5ZOMOjNMMhTtJEySQOMxwrJae5jPA0S69UPMEyuU3VrUzGOL-O8SgLo1ymSaiwCqcqjGSYHKK9unjqzdF2DtHNKM6ja0elYxmFyqmoD28ONQJERUxgBPM8Us9rHvhzMKUoWMDKklHhlS4Vde0FFfCSCQEuLZgoS8OE59MhOtvc_SzaumgX-nH53rXWUfdfn09fpTauzQocyIrLNtyqW_Z9Z2r90jXPRfetCehVlXpdpV71pC1aV6nB6i43OmODfDSm033VmLYy86Yz1ZueL5t_L5xsnR-W7eK1sX_-WnMffOaCT-kPC8J-Cw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>许勇强 谭忠 孙道恒</creator><general>Elsevier Ltd</general><general>Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China</general><general>School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China%School of Mathematical Sciences, Xiamen University, Xiamen 361005, China%Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20161101</creationdate><title>MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN</title><author>许勇强 谭忠 孙道恒</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-3e808c1e9e85441fdf697d0eb8a595bb5384b238ff49c06b588023a58bbe58473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>35J99</topic><topic>45E10</topic><topic>45G05</topic><topic>asymptotic</topic><topic>existence</topic><topic>fractional Laplacian</topic><topic>Laplacian</topic><topic>Sobolev trace inequality</topic><topic>分数阶</topic><topic>变号解</topic><topic>多重性</topic><topic>扩展方法</topic><topic>拉普拉斯</topic><topic>有界域</topic><topic>非线性椭圆问题</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>许勇强 谭忠 孙道恒</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>许勇强 谭忠 孙道恒</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>36</volume><issue>6</issue><spage>1793</spage><epage>1803</epage><pages>1793-1803</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(16)30106-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2016-11, Vol.36 (6), p.1793-1803 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201606017 |
source | ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
subjects | 35J99 45E10 45G05 asymptotic existence fractional Laplacian Laplacian Sobolev trace inequality 分数阶 变号解 多重性 扩展方法 拉普拉斯 有界域 非线性椭圆问题 |
title | MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MULTIPLICITY%20RESULTS%20FOR%20A%20NONLINEAR%20ELLIPTIC%20PROBLEM%20INVOLVING%20THE%20FRACTIONAL%20LAPLACIAN&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E8%AE%B8%E5%8B%87%E5%BC%BA%20%E8%B0%AD%E5%BF%A0%20%E5%AD%99%E9%81%93%E6%81%92&rft.date=2016-11-01&rft.volume=36&rft.issue=6&rft.spage=1793&rft.epage=1803&rft.pages=1793-1803&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(16)30106-0&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201606017%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=670752073&rft_wanfj_id=sxwlxb_e201606017&rft_els_id=S0252960216301060&rfr_iscdi=true |