SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS

In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2015-03, Vol.35 (2), p.423-438
1. Verfasser: 康东升 罗婧 史晓琳
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 2
container_start_page 423
container_title Acta mathematica scientia
container_volume 35
creator 康东升 罗婧 史晓琳
description In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.
doi_str_mv 10.1016/S0252-9602(15)60013-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201502013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664205693</cqvip_id><wanfj_id>sxwlxb_e201502013</wanfj_id><els_id>S0252960215600133</els_id><sourcerecordid>sxwlxb_e201502013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</originalsourceid><addsrcrecordid>eNqFkFFPwjAUhRujiYj-BJPGJ3mYtivtxpOZMGFJ3QgbJHuq29rhCG66oeC_twP01ZfetPfcc24_AK4xusMIs_sQmdQ0BgyZt5j2GEKYGOQEdDC19DOyrVPQ-ZOcg4umWWkNM1m_A17CgM8jL_BDGAXQ5dybRt4QhnEYuc8h9PxFwBeeP4ajYP7IYzicebrvcOgHPvd812nvbggdfwQnzmwUG1E8deE0iFw_8hweXoKzPFk36upYu2D-5EbDicGDcWtkZMRCG6NvIkYQTikhpl41s7BURMl8QCxqs5RQSUmaIZuYUkkbK5omuZVjOUAS44RQ0gW9g-82KfOkXIpV9VmXOlE0u-16lwplIkyRPojW0oM2q6umqVUu3uviLam_BUaiRSr2SEXLS2Aq9khFO_dwmFP6I1-FqkWTFarMlCxqlW2ErIp_HW6Oya9Vufwo9J6_0YxpBpQNCPkBMbWAgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>康东升 罗婧 史晓琳</creator><creatorcontrib>康东升 罗婧 史晓琳</creatorcontrib><description>In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(15)60013-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>35J50 ; 35J60 ; critical nonlinearity ; Elliptic system ; global compactness ; Hardy inequality ; solution ; 临界期 ; 无穷多 ; 椭圆型方程组 ; 椭圆形 ; 系统 ; 索伯列夫 ; 逼近问题 ; 非线性</subject><ispartof>Acta mathematica scientia, 2015-03, Vol.35 (2), p.423-438</ispartof><rights>2015 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</citedby><cites>FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960215600133$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>康东升 罗婧 史晓琳</creatorcontrib><title>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.</description><subject>35J50</subject><subject>35J60</subject><subject>critical nonlinearity</subject><subject>Elliptic system</subject><subject>global compactness</subject><subject>Hardy inequality</subject><subject>solution</subject><subject>临界期</subject><subject>无穷多</subject><subject>椭圆型方程组</subject><subject>椭圆形</subject><subject>系统</subject><subject>索伯列夫</subject><subject>逼近问题</subject><subject>非线性</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkFFPwjAUhRujiYj-BJPGJ3mYtivtxpOZMGFJ3QgbJHuq29rhCG66oeC_twP01ZfetPfcc24_AK4xusMIs_sQmdQ0BgyZt5j2GEKYGOQEdDC19DOyrVPQ-ZOcg4umWWkNM1m_A17CgM8jL_BDGAXQ5dybRt4QhnEYuc8h9PxFwBeeP4ajYP7IYzicebrvcOgHPvd812nvbggdfwQnzmwUG1E8deE0iFw_8hweXoKzPFk36upYu2D-5EbDicGDcWtkZMRCG6NvIkYQTikhpl41s7BURMl8QCxqs5RQSUmaIZuYUkkbK5omuZVjOUAS44RQ0gW9g-82KfOkXIpV9VmXOlE0u-16lwplIkyRPojW0oM2q6umqVUu3uviLam_BUaiRSr2SEXLS2Aq9khFO_dwmFP6I1-FqkWTFarMlCxqlW2ErIp_HW6Oya9Vufwo9J6_0YxpBpQNCPkBMbWAgA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>康东升 罗婧 史晓琳</creator><general>Elsevier Ltd</general><general>School of Mathematics and Statistics, South-Central University for Nationalities,Wuhan 430074, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150301</creationdate><title>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</title><author>康东升 罗婧 史晓琳</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>35J50</topic><topic>35J60</topic><topic>critical nonlinearity</topic><topic>Elliptic system</topic><topic>global compactness</topic><topic>Hardy inequality</topic><topic>solution</topic><topic>临界期</topic><topic>无穷多</topic><topic>椭圆型方程组</topic><topic>椭圆形</topic><topic>系统</topic><topic>索伯列夫</topic><topic>逼近问题</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>康东升 罗婧 史晓琳</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>康东升 罗婧 史晓琳</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>35</volume><issue>2</issue><spage>423</spage><epage>438</epage><pages>423-438</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(15)60013-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2015-03, Vol.35 (2), p.423-438
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201502013
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects 35J50
35J60
critical nonlinearity
Elliptic system
global compactness
Hardy inequality
solution
临界期
无穷多
椭圆型方程组
椭圆形
系统
索伯列夫
逼近问题
非线性
title SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOLUTIONS%20TO%20ELLIPTIC%20SYSTEMS%20INVOLVING%20DOUBLY%20CRITICAL%20NONLINEARITIES%20AND%20HARDY-TYPE%20POTENTIALS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E5%BA%B7%E4%B8%9C%E5%8D%87%20%E7%BD%97%E5%A9%A7%20%E5%8F%B2%E6%99%93%E7%90%B3&rft.date=2015-03-01&rft.volume=35&rft.issue=2&rft.spage=423&rft.epage=438&rft.pages=423-438&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(15)60013-3&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201502013%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=664205693&rft_wanfj_id=sxwlxb_e201502013&rft_els_id=S0252960215600133&rfr_iscdi=true