SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS
In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2015-03, Vol.35 (2), p.423-438 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 2 |
container_start_page | 423 |
container_title | Acta mathematica scientia |
container_volume | 35 |
creator | 康东升 罗婧 史晓琳 |
description | In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established. |
doi_str_mv | 10.1016/S0252-9602(15)60013-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201502013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664205693</cqvip_id><wanfj_id>sxwlxb_e201502013</wanfj_id><els_id>S0252960215600133</els_id><sourcerecordid>sxwlxb_e201502013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</originalsourceid><addsrcrecordid>eNqFkFFPwjAUhRujiYj-BJPGJ3mYtivtxpOZMGFJ3QgbJHuq29rhCG66oeC_twP01ZfetPfcc24_AK4xusMIs_sQmdQ0BgyZt5j2GEKYGOQEdDC19DOyrVPQ-ZOcg4umWWkNM1m_A17CgM8jL_BDGAXQ5dybRt4QhnEYuc8h9PxFwBeeP4ajYP7IYzicebrvcOgHPvd812nvbggdfwQnzmwUG1E8deE0iFw_8hweXoKzPFk36upYu2D-5EbDicGDcWtkZMRCG6NvIkYQTikhpl41s7BURMl8QCxqs5RQSUmaIZuYUkkbK5omuZVjOUAS44RQ0gW9g-82KfOkXIpV9VmXOlE0u-16lwplIkyRPojW0oM2q6umqVUu3uviLam_BUaiRSr2SEXLS2Aq9khFO_dwmFP6I1-FqkWTFarMlCxqlW2ErIp_HW6Oya9Vufwo9J6_0YxpBpQNCPkBMbWAgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>康东升 罗婧 史晓琳</creator><creatorcontrib>康东升 罗婧 史晓琳</creatorcontrib><description>In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(15)60013-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>35J50 ; 35J60 ; critical nonlinearity ; Elliptic system ; global compactness ; Hardy inequality ; solution ; 临界期 ; 无穷多 ; 椭圆型方程组 ; 椭圆形 ; 系统 ; 索伯列夫 ; 逼近问题 ; 非线性</subject><ispartof>Acta mathematica scientia, 2015-03, Vol.35 (2), p.423-438</ispartof><rights>2015 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</citedby><cites>FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960215600133$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>康东升 罗婧 史晓琳</creatorcontrib><title>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.</description><subject>35J50</subject><subject>35J60</subject><subject>critical nonlinearity</subject><subject>Elliptic system</subject><subject>global compactness</subject><subject>Hardy inequality</subject><subject>solution</subject><subject>临界期</subject><subject>无穷多</subject><subject>椭圆型方程组</subject><subject>椭圆形</subject><subject>系统</subject><subject>索伯列夫</subject><subject>逼近问题</subject><subject>非线性</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkFFPwjAUhRujiYj-BJPGJ3mYtivtxpOZMGFJ3QgbJHuq29rhCG66oeC_twP01ZfetPfcc24_AK4xusMIs_sQmdQ0BgyZt5j2GEKYGOQEdDC19DOyrVPQ-ZOcg4umWWkNM1m_A17CgM8jL_BDGAXQ5dybRt4QhnEYuc8h9PxFwBeeP4ajYP7IYzicebrvcOgHPvd812nvbggdfwQnzmwUG1E8deE0iFw_8hweXoKzPFk36upYu2D-5EbDicGDcWtkZMRCG6NvIkYQTikhpl41s7BURMl8QCxqs5RQSUmaIZuYUkkbK5omuZVjOUAS44RQ0gW9g-82KfOkXIpV9VmXOlE0u-16lwplIkyRPojW0oM2q6umqVUu3uviLam_BUaiRSr2SEXLS2Aq9khFO_dwmFP6I1-FqkWTFarMlCxqlW2ErIp_HW6Oya9Vufwo9J6_0YxpBpQNCPkBMbWAgA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>康东升 罗婧 史晓琳</creator><general>Elsevier Ltd</general><general>School of Mathematics and Statistics, South-Central University for Nationalities,Wuhan 430074, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150301</creationdate><title>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</title><author>康东升 罗婧 史晓琳</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-4206301b5332252c71de3edf937586b35d53bc0832ded81e5baf7f1d90d11a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>35J50</topic><topic>35J60</topic><topic>critical nonlinearity</topic><topic>Elliptic system</topic><topic>global compactness</topic><topic>Hardy inequality</topic><topic>solution</topic><topic>临界期</topic><topic>无穷多</topic><topic>椭圆型方程组</topic><topic>椭圆形</topic><topic>系统</topic><topic>索伯列夫</topic><topic>逼近问题</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>康东升 罗婧 史晓琳</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>康东升 罗婧 史晓琳</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>35</volume><issue>2</issue><spage>423</spage><epage>438</epage><pages>423-438</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(15)60013-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2015-03, Vol.35 (2), p.423-438 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201502013 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | 35J50 35J60 critical nonlinearity Elliptic system global compactness Hardy inequality solution 临界期 无穷多 椭圆型方程组 椭圆形 系统 索伯列夫 逼近问题 非线性 |
title | SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOLUTIONS%20TO%20ELLIPTIC%20SYSTEMS%20INVOLVING%20DOUBLY%20CRITICAL%20NONLINEARITIES%20AND%20HARDY-TYPE%20POTENTIALS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E5%BA%B7%E4%B8%9C%E5%8D%87%20%E7%BD%97%E5%A9%A7%20%E5%8F%B2%E6%99%93%E7%90%B3&rft.date=2015-03-01&rft.volume=35&rft.issue=2&rft.spage=423&rft.epage=438&rft.pages=423-438&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(15)60013-3&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201502013%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=664205693&rft_wanfj_id=sxwlxb_e201502013&rft_els_id=S0252960215600133&rfr_iscdi=true |