MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS

In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2014-09, Vol.34 (5), p.1495-1509
1. Verfasser: 尚月赟 王莉
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1509
container_issue 5
container_start_page 1495
container_title Acta mathematica scientia
container_volume 34
creator 尚月赟 王莉
description In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple nontrivial solutions to this equation is verified.
doi_str_mv 10.1016/S0252-9602(14)60099-0
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201405011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662526238</cqvip_id><wanfj_id>sxwlxb_e201405011</wanfj_id><els_id>S0252960214600990</els_id><sourcerecordid>sxwlxb_e201405011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c1fa206eba70cccd35ea931bfc18f63888d555be252c7fc161a0ba083a780ca53</originalsourceid><addsrcrecordid>eNqFkFFPwjAUhRujiYj-BJPGJ3yY3m5rN57MQoYsKZsyMPGp6UqnM7DpCoL_3gLqq083uTnfOfcehC4J3BAg7DYHl7pOn4HbI_41A-j3HThCHUIDu4YwOEadP8kpOjPmDSznMr-D0vGMT5MHHuM0S6eT5CmJOM4zPpsmWZrjYTbBER7wKM9xNsR5PE54ksbRBD9k_HkUTcZZmgxw_DiL9sA5OinlwuiLn9lFs2E8HYwcnt0ng4g7ygdv5ShSSheYLmQASqm5R7Xse6QoFQlL5oVhOKeUFtoerQK7ZERCISH0ZBCCktTrouuD70bWpaxfxFuzbmubKMx2s9gWQrtAfKBAiNX2Dtr3tvlYa7MSy8oovVjIWjdrIwhlgS0JyM6WHqSqbYxpdSne22op2y9BQOy6Fvuuxa5IQXyx71qA5e4OnLY_f1a6FUZVulZ6XrVarcS8qf51uPpJfm3ql4_KvvQbzZgFmOuF3jchzooy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567087015</pqid></control><display><type>article</type><title>MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>尚月赟 王莉</creator><creatorcontrib>尚月赟 王莉</creatorcontrib><description>In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple nontrivial solutions to this equation is verified.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(14)60099-0</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>critical exponents ; Exponents ; Functions (mathematics) ; Manifolds ; Mathematical analysis ; nontrivial solutions ; polyharmonic problems ; variational methods ; 临界指数 ; 半线性 ; 多解 ; 多重调和方程 ; 连续函数 ; 非平凡解</subject><ispartof>Acta mathematica scientia, 2014-09, Vol.34 (5), p.1495-1509</ispartof><rights>2014 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c1fa206eba70cccd35ea931bfc18f63888d555be252c7fc161a0ba083a780ca53</citedby><cites>FETCH-LOGICAL-c403t-c1fa206eba70cccd35ea931bfc18f63888d555be252c7fc161a0ba083a780ca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(14)60099-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>尚月赟 王莉</creatorcontrib><title>MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple nontrivial solutions to this equation is verified.</description><subject>critical exponents</subject><subject>Exponents</subject><subject>Functions (mathematics)</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>nontrivial solutions</subject><subject>polyharmonic problems</subject><subject>variational methods</subject><subject>临界指数</subject><subject>半线性</subject><subject>多解</subject><subject>多重调和方程</subject><subject>连续函数</subject><subject>非平凡解</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkFFPwjAUhRujiYj-BJPGJ3yY3m5rN57MQoYsKZsyMPGp6UqnM7DpCoL_3gLqq083uTnfOfcehC4J3BAg7DYHl7pOn4HbI_41A-j3HThCHUIDu4YwOEadP8kpOjPmDSznMr-D0vGMT5MHHuM0S6eT5CmJOM4zPpsmWZrjYTbBER7wKM9xNsR5PE54ksbRBD9k_HkUTcZZmgxw_DiL9sA5OinlwuiLn9lFs2E8HYwcnt0ng4g7ygdv5ShSSheYLmQASqm5R7Xse6QoFQlL5oVhOKeUFtoerQK7ZERCISH0ZBCCktTrouuD70bWpaxfxFuzbmubKMx2s9gWQrtAfKBAiNX2Dtr3tvlYa7MSy8oovVjIWjdrIwhlgS0JyM6WHqSqbYxpdSne22op2y9BQOy6Fvuuxa5IQXyx71qA5e4OnLY_f1a6FUZVulZ6XrVarcS8qf51uPpJfm3ql4_KvvQbzZgFmOuF3jchzooy</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>尚月赟 王莉</creator><general>Elsevier Ltd</general><general>Department of Mathematics, Huazhong Normal University, Wuhan 430074, China Department of Mathematics, South-Central University for Nationalities, Wuhan 430074, China%School of Basic Science, East China Jiaotong University, Nanchang 330013, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140901</creationdate><title>MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS</title><author>尚月赟 王莉</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c1fa206eba70cccd35ea931bfc18f63888d555be252c7fc161a0ba083a780ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>critical exponents</topic><topic>Exponents</topic><topic>Functions (mathematics)</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>nontrivial solutions</topic><topic>polyharmonic problems</topic><topic>variational methods</topic><topic>临界指数</topic><topic>半线性</topic><topic>多解</topic><topic>多重调和方程</topic><topic>连续函数</topic><topic>非平凡解</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>尚月赟 王莉</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>尚月赟 王莉</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>34</volume><issue>5</issue><spage>1495</spage><epage>1509</epage><pages>1495-1509</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this paper, we are concerned with the following problem:{(-△)ku=λf(x)|u|q-2u+g(x)|u|k*-2u, x∈Ω, u∈H k0 (Ω), where Ωis a bounded domain in RN with N ≥2k+1, 1〈q〈2,λ〉0, f, g are continuous functions on Ω which are somewhere positive but which may change sign on Ω. k* = N2/N-2k is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple nontrivial solutions to this equation is verified.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(14)60099-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2014-09, Vol.34 (5), p.1495-1509
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201405011
source Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects critical exponents
Exponents
Functions (mathematics)
Manifolds
Mathematical analysis
nontrivial solutions
polyharmonic problems
variational methods
临界指数
半线性
多解
多重调和方程
连续函数
非平凡解
title MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MULTIPLE%20NONTRIVIAL%20SOLUTIONS%20FOR%20A%20CLASS%20OF%20SEMILINEAR%20POLYHARMONIC%20EQUATIONS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E5%B0%9A%E6%9C%88%E8%B5%9F%20%E7%8E%8B%E8%8E%89&rft.date=2014-09-01&rft.volume=34&rft.issue=5&rft.spage=1495&rft.epage=1509&rft.pages=1495-1509&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(14)60099-0&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201405011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567087015&rft_id=info:pmid/&rft_cqvip_id=662526238&rft_wanfj_id=sxwlxb_e201405011&rft_els_id=S0252960214600990&rfr_iscdi=true