ON DISTRIBUTIONAL n-CHAOS
Let (X, f ) be a topological dynamical system, where X is a nonempty compact and metrizable space with the metric d and f :X →X is a continuous map. For any integer n≥2, denote the product space by X(n)=X · · · × X| {z }n times . We say a system (X, f ) is generally distributionally n-chaotic if the...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2014-09, Vol.34 (5), p.1473-1480 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1480 |
---|---|
container_issue | 5 |
container_start_page | 1473 |
container_title | Acta mathematica scientia |
container_volume | 34 |
creator | 谭枫 符和满 |
description | Let (X, f ) be a topological dynamical system, where X is a nonempty compact and metrizable space with the metric d and f :X →X is a continuous map. For any integer n≥2, denote the product space by X(n)=X · · · × X| {z }n times . We say a system (X, f ) is generally distributionally n-chaotic if there exists a residual set D ?X(n) such that for any point x=(x1, · · · , xn)∈D, lim inf k→∞#({i:0≤i≤k-1, min{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ0}) k=0 for some real numberδ0〉0 and lim sup k→∞#({i:0≤i≤k-1, max{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ}) k=1 for any real number δ 〉 0, where #(·) means the cardinality of a set. In this paper, we show that for each integer n ≥ 2, there exists a system (X,σ) which satisfies the following conditions: (1) (X,σ) is transitive;(2) (X,σ) is generally distributionally n-chaotic, but has no distributionally (n+1)-tuples;(3) the topological entropy of (X,σ) is zero and it has an IT-tuple. |
doi_str_mv | 10.1016/S0252-9602(14)60097-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201405009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662526236</cqvip_id><wanfj_id>sxwlxb_e201405009</wanfj_id><els_id>S0252960214600977</els_id><sourcerecordid>sxwlxb_e201405009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a92cf5234a79353f524bb66d59097f356b3f52ba92bb49bc012e3be3cdec416e3</originalsourceid><addsrcrecordid>eNqFkEtPwkAUhSdGExH9AS5MiCtYVOddujKID5oQmgisJ53pFIeUFmZA8N87pejW1UxuvnPPPQeAOwQfEET8cQoxw0HEIe4i2uMQRmEQnoEWYqEfw354Dlp_yCW4cm4JvQ5z2gK3yaTzEk9nH_HzfBYnk8G4UwbD0SCZXoOLPC2cvjm9bTB_e50NR8E4eY-Hg3GgKCTbII2wyhkmNA0jwoj_Uik5z1jkz8gJ47KeSY9JSSOpIMKaSE1UphVFXJM26DV792mZp-VCLKudLb2jcId9cZBCY4goZD6WZ7sNu7bVZqfdVqyMU7oo0lJXOycQ4yHs04iEHmUNqmzlnNW5WFuzSu23QFDUtYljbaLuRCAqjrWJWvfU6LTP_GW0FU4ZXSqdGavVVmSV-XfD_cn5syoXG-Mj_Vpz7gUcE05-AH5reuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567084937</pqid></control><display><type>article</type><title>ON DISTRIBUTIONAL n-CHAOS</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>谭枫 符和满</creator><creatorcontrib>谭枫 符和满</creatorcontrib><description>Let (X, f ) be a topological dynamical system, where X is a nonempty compact and metrizable space with the metric d and f :X →X is a continuous map. For any integer n≥2, denote the product space by X(n)=X · · · × X| {z }n times . We say a system (X, f ) is generally distributionally n-chaotic if there exists a residual set D ?X(n) such that for any point x=(x1, · · · , xn)∈D, lim inf k→∞#({i:0≤i≤k-1, min{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ0}) k=0 for some real numberδ0〉0 and lim sup k→∞#({i:0≤i≤k-1, max{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ}) k=1 for any real number δ 〉 0, where #(·) means the cardinality of a set. In this paper, we show that for each integer n ≥ 2, there exists a system (X,σ) which satisfies the following conditions: (1) (X,σ) is transitive;(2) (X,σ) is generally distributionally n-chaotic, but has no distributionally (n+1)-tuples;(3) the topological entropy of (X,σ) is zero and it has an IT-tuple.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(14)60097-7</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>distributional chaos ; Dynamical systems ; Dynamics ; Entropy ; Integers ; LIM ; Real numbers ; Topology ; transitive systems ; 分配 ; 可度量空间 ; 拓扑动力系统 ; 拓扑熵 ; 整数 ; 映射 ; 集合</subject><ispartof>Acta mathematica scientia, 2014-09, Vol.34 (5), p.1473-1480</ispartof><rights>2014 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a92cf5234a79353f524bb66d59097f356b3f52ba92bb49bc012e3be3cdec416e3</citedby><cites>FETCH-LOGICAL-c403t-a92cf5234a79353f524bb66d59097f356b3f52ba92bb49bc012e3be3cdec416e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960214600977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>谭枫 符和满</creatorcontrib><title>ON DISTRIBUTIONAL n-CHAOS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>Let (X, f ) be a topological dynamical system, where X is a nonempty compact and metrizable space with the metric d and f :X →X is a continuous map. For any integer n≥2, denote the product space by X(n)=X · · · × X| {z }n times . We say a system (X, f ) is generally distributionally n-chaotic if there exists a residual set D ?X(n) such that for any point x=(x1, · · · , xn)∈D, lim inf k→∞#({i:0≤i≤k-1, min{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ0}) k=0 for some real numberδ0〉0 and lim sup k→∞#({i:0≤i≤k-1, max{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ}) k=1 for any real number δ 〉 0, where #(·) means the cardinality of a set. In this paper, we show that for each integer n ≥ 2, there exists a system (X,σ) which satisfies the following conditions: (1) (X,σ) is transitive;(2) (X,σ) is generally distributionally n-chaotic, but has no distributionally (n+1)-tuples;(3) the topological entropy of (X,σ) is zero and it has an IT-tuple.</description><subject>distributional chaos</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Integers</subject><subject>LIM</subject><subject>Real numbers</subject><subject>Topology</subject><subject>transitive systems</subject><subject>分配</subject><subject>可度量空间</subject><subject>拓扑动力系统</subject><subject>拓扑熵</subject><subject>整数</subject><subject>映射</subject><subject>集合</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwkAUhSdGExH9AS5MiCtYVOddujKID5oQmgisJ53pFIeUFmZA8N87pejW1UxuvnPPPQeAOwQfEET8cQoxw0HEIe4i2uMQRmEQnoEWYqEfw354Dlp_yCW4cm4JvQ5z2gK3yaTzEk9nH_HzfBYnk8G4UwbD0SCZXoOLPC2cvjm9bTB_e50NR8E4eY-Hg3GgKCTbII2wyhkmNA0jwoj_Uik5z1jkz8gJ47KeSY9JSSOpIMKaSE1UphVFXJM26DV792mZp-VCLKudLb2jcId9cZBCY4goZD6WZ7sNu7bVZqfdVqyMU7oo0lJXOycQ4yHs04iEHmUNqmzlnNW5WFuzSu23QFDUtYljbaLuRCAqjrWJWvfU6LTP_GW0FU4ZXSqdGavVVmSV-XfD_cn5syoXG-Mj_Vpz7gUcE05-AH5reuc</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>谭枫 符和满</creator><general>Elsevier Ltd</general><general>School of the mathematical science, South China Normal University, Guangzhou 510631, China%College of Mathematics and Information Sciences, Zhaoqing University, Zhaoqing 526061, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140901</creationdate><title>ON DISTRIBUTIONAL n-CHAOS</title><author>谭枫 符和满</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a92cf5234a79353f524bb66d59097f356b3f52ba92bb49bc012e3be3cdec416e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>distributional chaos</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Integers</topic><topic>LIM</topic><topic>Real numbers</topic><topic>Topology</topic><topic>transitive systems</topic><topic>分配</topic><topic>可度量空间</topic><topic>拓扑动力系统</topic><topic>拓扑熵</topic><topic>整数</topic><topic>映射</topic><topic>集合</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>谭枫 符和满</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>谭枫 符和满</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON DISTRIBUTIONAL n-CHAOS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>34</volume><issue>5</issue><spage>1473</spage><epage>1480</epage><pages>1473-1480</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>Let (X, f ) be a topological dynamical system, where X is a nonempty compact and metrizable space with the metric d and f :X →X is a continuous map. For any integer n≥2, denote the product space by X(n)=X · · · × X| {z }n times . We say a system (X, f ) is generally distributionally n-chaotic if there exists a residual set D ?X(n) such that for any point x=(x1, · · · , xn)∈D, lim inf k→∞#({i:0≤i≤k-1, min{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ0}) k=0 for some real numberδ0〉0 and lim sup k→∞#({i:0≤i≤k-1, max{d(fi(xj), fi(xl)):1≤j 6=l≤n}〈δ}) k=1 for any real number δ 〉 0, where #(·) means the cardinality of a set. In this paper, we show that for each integer n ≥ 2, there exists a system (X,σ) which satisfies the following conditions: (1) (X,σ) is transitive;(2) (X,σ) is generally distributionally n-chaotic, but has no distributionally (n+1)-tuples;(3) the topological entropy of (X,σ) is zero and it has an IT-tuple.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(14)60097-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2014-09, Vol.34 (5), p.1473-1480 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201405009 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | distributional chaos Dynamical systems Dynamics Entropy Integers LIM Real numbers Topology transitive systems 分配 可度量空间 拓扑动力系统 拓扑熵 整数 映射 集合 |
title | ON DISTRIBUTIONAL n-CHAOS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20DISTRIBUTIONAL%20n-CHAOS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E8%B0%AD%E6%9E%AB%20%E7%AC%A6%E5%92%8C%E6%BB%A1&rft.date=2014-09-01&rft.volume=34&rft.issue=5&rft.spage=1473&rft.epage=1480&rft.pages=1473-1480&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(14)60097-7&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201405009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567084937&rft_id=info:pmid/&rft_cqvip_id=662526236&rft_wanfj_id=sxwlxb_e201405009&rft_els_id=S0252960214600977&rfr_iscdi=true |