ZEROS OF BRAUER CHARACTERS
The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters o...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2012-07, Vol.32 (4), p.1435-1440 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1440 |
---|---|
container_issue | 4 |
container_start_page | 1435 |
container_title | Acta mathematica scientia |
container_volume | 32 |
creator | 王慧群 陈晓友 曾吉文 |
description | The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on 9. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G^0 - H^0. |
doi_str_mv | 10.1016/S0252-9602(12)60112-X |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201204014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42811341</cqvip_id><wanfj_id>sxwlxb_e201204014</wanfj_id><els_id>S025296021260112X</els_id><sourcerecordid>sxwlxb_e201204014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-72586f34d0b6785669bbd0ed7fb61a2bd74d9f80abaf2a656516acd71aa4a8263</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4BQZhv7qGam6a37ZPU0jlhMOg2GL6EtElmx2w1mW7-e7tNffXpwuF83HMIuQJ6CxTwbkJZwLwYKbsB1kcKwLz5EelAELYwjcJj0vmjnJIz55a01THkHXL5nOXjSW886D3kySzLe-kwyZN0muWTc3Ji5Mrpi5_bJbNBNk2H3mj8-JQmI6_0MV57IQsiND5XtMAwChDjolBUq9AUCJIVKuQqNhGVhTRMYoABoCxVCFJyGTH0u6R_8N3I2sh6IZbNh63bROG2m9W2EJpRYJRT4C03OHBL2zhntRFvtnqV9ksAFbsxxH4MsWsqgIn9GGLe6u4POt0W-ay0Fa6sdF1qVVldroVqqn8drn-SX5p68V61f_5GcxYB-Bz8b4oCbW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ZEROS OF BRAUER CHARACTERS</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>王慧群 陈晓友 曾吉文</creator><creatorcontrib>王慧群 陈晓友 曾吉文</creatorcontrib><description>The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on 9. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G^0 - H^0.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(12)60112-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>20C15 ; 20C20 ; Brauer character ; vanishing regular element ; 不可约 ; 元素 ; 性状 ; 有限群 ; 特征 ; 生长激素 ; 零点 ; 非线性</subject><ispartof>Acta mathematica scientia, 2012-07, Vol.32 (4), p.1435-1440</ispartof><rights>2012 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-72586f34d0b6785669bbd0ed7fb61a2bd74d9f80abaf2a656516acd71aa4a8263</citedby><cites>FETCH-LOGICAL-c369t-72586f34d0b6785669bbd0ed7fb61a2bd74d9f80abaf2a656516acd71aa4a8263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S025296021260112X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>王慧群 陈晓友 曾吉文</creatorcontrib><title>ZEROS OF BRAUER CHARACTERS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on 9. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G^0 - H^0.</description><subject>20C15</subject><subject>20C20</subject><subject>Brauer character</subject><subject>vanishing regular element</subject><subject>不可约</subject><subject>元素</subject><subject>性状</subject><subject>有限群</subject><subject>特征</subject><subject>生长激素</subject><subject>零点</subject><subject>非线性</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4BQZhv7qGam6a37ZPU0jlhMOg2GL6EtElmx2w1mW7-e7tNffXpwuF83HMIuQJ6CxTwbkJZwLwYKbsB1kcKwLz5EelAELYwjcJj0vmjnJIz55a01THkHXL5nOXjSW886D3kySzLe-kwyZN0muWTc3Ji5Mrpi5_bJbNBNk2H3mj8-JQmI6_0MV57IQsiND5XtMAwChDjolBUq9AUCJIVKuQqNhGVhTRMYoABoCxVCFJyGTH0u6R_8N3I2sh6IZbNh63bROG2m9W2EJpRYJRT4C03OHBL2zhntRFvtnqV9ksAFbsxxH4MsWsqgIn9GGLe6u4POt0W-ay0Fa6sdF1qVVldroVqqn8drn-SX5p68V61f_5GcxYB-Bz8b4oCbW0</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>王慧群 陈晓友 曾吉文</creator><general>Elsevier Ltd</general><general>School of Mathematical Sciences, Xiamen University, Xiamen 361005, China%College of Science, Henan University of Technology, Zhengzhou 450001, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120701</creationdate><title>ZEROS OF BRAUER CHARACTERS</title><author>王慧群 陈晓友 曾吉文</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-72586f34d0b6785669bbd0ed7fb61a2bd74d9f80abaf2a656516acd71aa4a8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>20C15</topic><topic>20C20</topic><topic>Brauer character</topic><topic>vanishing regular element</topic><topic>不可约</topic><topic>元素</topic><topic>性状</topic><topic>有限群</topic><topic>特征</topic><topic>生长激素</topic><topic>零点</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王慧群 陈晓友 曾吉文</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王慧群 陈晓友 曾吉文</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZEROS OF BRAUER CHARACTERS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>32</volume><issue>4</issue><spage>1435</spage><epage>1440</epage><pages>1435-1440</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on 9. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G^0 - H^0.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(12)60112-X</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2012-07, Vol.32 (4), p.1435-1440 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201204014 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | 20C15 20C20 Brauer character vanishing regular element 不可约 元素 性状 有限群 特征 生长激素 零点 非线性 |
title | ZEROS OF BRAUER CHARACTERS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZEROS%20OF%20BRAUER%20CHARACTERS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E7%8E%8B%E6%85%A7%E7%BE%A4%20%E9%99%88%E6%99%93%E5%8F%8B%20%E6%9B%BE%E5%90%89%E6%96%87&rft.date=2012-07-01&rft.volume=32&rft.issue=4&rft.spage=1435&rft.epage=1440&rft.pages=1435-1440&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(12)60112-X&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201204014%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=42811341&rft_wanfj_id=sxwlxb_e201204014&rft_els_id=S025296021260112X&rfr_iscdi=true |