FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP

We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2012-05, Vol.32 (3), p.842-850
Hauptverfasser: Mushtaq, Qaiser, Asif, Shahla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850
container_issue 3
container_start_page 842
container_title Acta mathematica scientia
container_volume 32
creator Mushtaq, Qaiser
Asif, Shahla
description We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.
doi_str_mv 10.1016/S0252-9602(12)60065-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201203002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42154565</cqvip_id><wanfj_id>sxwlxb_e201203002</wanfj_id><els_id>S0252960212600654</els_id><sourcerecordid>sxwlxb_e201203002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</originalsourceid><addsrcrecordid>eNqFkEFPwkAQhTdGExH9CSb1Bofq7LTbdk8EsSAJAilw3rTbBUughS4I_nu3gF49bd7me_NmHiGPFJ4pUO9lAsjQ5h5gg2LTA_CY7V6RGmW--YbAvya1P-SW3Gm9BONDz62RVrc_7E9DaxxGH7Npe9ofDa0oHEfhJBxe5Khrta3J7LUXjWbjSo37nXb0Zp30PbmZxyutHi5vncy64bTzbg9GPYMNbOkC7uyEcxUHwNBnkqGMHcopDzCep-j6qVKp47sJB4cyzhmHlColqSODxPGSalOnTprnuYc4n8f5QiyLfZmbRKGPh9UxEQqBIjgAaNjGmd2UxXav9E6sMy3VahXnqthrQSFAgyJwg7IzKstC61LNxabM1nH5bSBRlStO5YqqOUFRnMoVrvG1zj5lbv7KVCm0zFQuVZqVSu5EWmT_Tni6JH8W-WKbmZN-o12kzGUec34AMsaEOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203209</pqid></control><display><type>article</type><title>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Mushtaq, Qaiser ; Asif, Shahla</creator><creatorcontrib>Mushtaq, Qaiser ; Asif, Shahla</creatorcontrib><description>We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(12)60065-4</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>05C20 ; 20B35 ; 20C30 ; Bianchi groups ; coset diagrams ; Group theory ; Mathematical analysis ; Permutations ; Picad ; Picard group ; Representations ; Subgroups ; 分组 ; 对称群 ; 操作设置 ; 有限群 ; 置换表示 ; 陪集图 ; 顶点</subject><ispartof>Acta mathematica scientia, 2012-05, Vol.32 (3), p.842-850</ispartof><rights>2012 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</citedby><cites>FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960212600654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mushtaq, Qaiser</creatorcontrib><creatorcontrib>Asif, Shahla</creatorcontrib><title>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.</description><subject>05C20</subject><subject>20B35</subject><subject>20C30</subject><subject>Bianchi groups</subject><subject>coset diagrams</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Permutations</subject><subject>Picad</subject><subject>Picard group</subject><subject>Representations</subject><subject>Subgroups</subject><subject>分组</subject><subject>对称群</subject><subject>操作设置</subject><subject>有限群</subject><subject>置换表示</subject><subject>陪集图</subject><subject>顶点</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwkAQhTdGExH9CSb1Bofq7LTbdk8EsSAJAilw3rTbBUughS4I_nu3gF49bd7me_NmHiGPFJ4pUO9lAsjQ5h5gg2LTA_CY7V6RGmW--YbAvya1P-SW3Gm9BONDz62RVrc_7E9DaxxGH7Npe9ofDa0oHEfhJBxe5Khrta3J7LUXjWbjSo37nXb0Zp30PbmZxyutHi5vncy64bTzbg9GPYMNbOkC7uyEcxUHwNBnkqGMHcopDzCep-j6qVKp47sJB4cyzhmHlColqSODxPGSalOnTprnuYc4n8f5QiyLfZmbRKGPh9UxEQqBIjgAaNjGmd2UxXav9E6sMy3VahXnqthrQSFAgyJwg7IzKstC61LNxabM1nH5bSBRlStO5YqqOUFRnMoVrvG1zj5lbv7KVCm0zFQuVZqVSu5EWmT_Tni6JH8W-WKbmZN-o12kzGUec34AMsaEOw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Mushtaq, Qaiser</creator><creator>Asif, Shahla</creator><general>Elsevier Ltd</general><general>Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120501</creationdate><title>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</title><author>Mushtaq, Qaiser ; Asif, Shahla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>05C20</topic><topic>20B35</topic><topic>20C30</topic><topic>Bianchi groups</topic><topic>coset diagrams</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Permutations</topic><topic>Picad</topic><topic>Picard group</topic><topic>Representations</topic><topic>Subgroups</topic><topic>分组</topic><topic>对称群</topic><topic>操作设置</topic><topic>有限群</topic><topic>置换表示</topic><topic>陪集图</topic><topic>顶点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mushtaq, Qaiser</creatorcontrib><creatorcontrib>Asif, Shahla</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mushtaq, Qaiser</au><au>Asif, Shahla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>32</volume><issue>3</issue><spage>842</spage><epage>850</epage><pages>842-850</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(12)60065-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2012-05, Vol.32 (3), p.842-850
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201203002
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects 05C20
20B35
20C30
Bianchi groups
coset diagrams
Group theory
Mathematical analysis
Permutations
Picad
Picard group
Representations
Subgroups
分组
对称群
操作设置
有限群
置换表示
陪集图
顶点
title FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINITE%20PERMUTATION%20REPRESENTATION%20OF%20A%20SUBGROUP%20OF%20PICARD%20GROUP&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Mushtaq,%20Qaiser&rft.date=2012-05-01&rft.volume=32&rft.issue=3&rft.spage=842&rft.epage=850&rft.pages=842-850&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(12)60065-4&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201203002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082203209&rft_id=info:pmid/&rft_cqvip_id=42154565&rft_wanfj_id=sxwlxb_e201203002&rft_els_id=S0252960212600654&rfr_iscdi=true