FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP
We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtain...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2012-05, Vol.32 (3), p.842-850 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 850 |
---|---|
container_issue | 3 |
container_start_page | 842 |
container_title | Acta mathematica scientia |
container_volume | 32 |
creator | Mushtaq, Qaiser Asif, Shahla |
description | We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive. |
doi_str_mv | 10.1016/S0252-9602(12)60065-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201203002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42154565</cqvip_id><wanfj_id>sxwlxb_e201203002</wanfj_id><els_id>S0252960212600654</els_id><sourcerecordid>sxwlxb_e201203002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</originalsourceid><addsrcrecordid>eNqFkEFPwkAQhTdGExH9CSb1Bofq7LTbdk8EsSAJAilw3rTbBUughS4I_nu3gF49bd7me_NmHiGPFJ4pUO9lAsjQ5h5gg2LTA_CY7V6RGmW--YbAvya1P-SW3Gm9BONDz62RVrc_7E9DaxxGH7Npe9ofDa0oHEfhJBxe5Khrta3J7LUXjWbjSo37nXb0Zp30PbmZxyutHi5vncy64bTzbg9GPYMNbOkC7uyEcxUHwNBnkqGMHcopDzCep-j6qVKp47sJB4cyzhmHlColqSODxPGSalOnTprnuYc4n8f5QiyLfZmbRKGPh9UxEQqBIjgAaNjGmd2UxXav9E6sMy3VahXnqthrQSFAgyJwg7IzKstC61LNxabM1nH5bSBRlStO5YqqOUFRnMoVrvG1zj5lbv7KVCm0zFQuVZqVSu5EWmT_Tni6JH8W-WKbmZN-o12kzGUec34AMsaEOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203209</pqid></control><display><type>article</type><title>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Mushtaq, Qaiser ; Asif, Shahla</creator><creatorcontrib>Mushtaq, Qaiser ; Asif, Shahla</creatorcontrib><description>We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(12)60065-4</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>05C20 ; 20B35 ; 20C30 ; Bianchi groups ; coset diagrams ; Group theory ; Mathematical analysis ; Permutations ; Picad ; Picard group ; Representations ; Subgroups ; 分组 ; 对称群 ; 操作设置 ; 有限群 ; 置换表示 ; 陪集图 ; 顶点</subject><ispartof>Acta mathematica scientia, 2012-05, Vol.32 (3), p.842-850</ispartof><rights>2012 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</citedby><cites>FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960212600654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mushtaq, Qaiser</creatorcontrib><creatorcontrib>Asif, Shahla</creatorcontrib><title>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.</description><subject>05C20</subject><subject>20B35</subject><subject>20C30</subject><subject>Bianchi groups</subject><subject>coset diagrams</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Permutations</subject><subject>Picad</subject><subject>Picard group</subject><subject>Representations</subject><subject>Subgroups</subject><subject>分组</subject><subject>对称群</subject><subject>操作设置</subject><subject>有限群</subject><subject>置换表示</subject><subject>陪集图</subject><subject>顶点</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwkAQhTdGExH9CSb1Bofq7LTbdk8EsSAJAilw3rTbBUughS4I_nu3gF49bd7me_NmHiGPFJ4pUO9lAsjQ5h5gg2LTA_CY7V6RGmW--YbAvya1P-SW3Gm9BONDz62RVrc_7E9DaxxGH7Npe9ofDa0oHEfhJBxe5Khrta3J7LUXjWbjSo37nXb0Zp30PbmZxyutHi5vncy64bTzbg9GPYMNbOkC7uyEcxUHwNBnkqGMHcopDzCep-j6qVKp47sJB4cyzhmHlColqSODxPGSalOnTprnuYc4n8f5QiyLfZmbRKGPh9UxEQqBIjgAaNjGmd2UxXav9E6sMy3VahXnqthrQSFAgyJwg7IzKstC61LNxabM1nH5bSBRlStO5YqqOUFRnMoVrvG1zj5lbv7KVCm0zFQuVZqVSu5EWmT_Tni6JH8W-WKbmZN-o12kzGUec34AMsaEOw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Mushtaq, Qaiser</creator><creator>Asif, Shahla</creator><general>Elsevier Ltd</general><general>Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120501</creationdate><title>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</title><author>Mushtaq, Qaiser ; Asif, Shahla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-b99ea805275c52ca3191982afd247deed374b9031599590d1eec13c8b36b16263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>05C20</topic><topic>20B35</topic><topic>20C30</topic><topic>Bianchi groups</topic><topic>coset diagrams</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Permutations</topic><topic>Picad</topic><topic>Picard group</topic><topic>Representations</topic><topic>Subgroups</topic><topic>分组</topic><topic>对称群</topic><topic>操作设置</topic><topic>有限群</topic><topic>置换表示</topic><topic>陪集图</topic><topic>顶点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mushtaq, Qaiser</creatorcontrib><creatorcontrib>Asif, Shahla</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mushtaq, Qaiser</au><au>Asif, Shahla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>32</volume><issue>3</issue><spage>842</spage><epage>850</epage><pages>842-850</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>We investigate action of a subgroup G1 of the Picard group on finite sets using coset diagrams. We show that its actions on the sets of 3, 4, 5, 6, 8, and 12 elements yield building blocks of Coset diagrams and that these blocks can be connected together so that a diagram of n vertices can be obtained. We show that various combinations of these blocks represent alternating and symmetric groups of various degrees. We show also that the action of G1 on a set of n vertices is transitive.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(12)60065-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2012-05, Vol.32 (3), p.842-850 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201203002 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | 05C20 20B35 20C30 Bianchi groups coset diagrams Group theory Mathematical analysis Permutations Picad Picard group Representations Subgroups 分组 对称群 操作设置 有限群 置换表示 陪集图 顶点 |
title | FINITE PERMUTATION REPRESENTATION OF A SUBGROUP OF PICARD GROUP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINITE%20PERMUTATION%20REPRESENTATION%20OF%20A%20SUBGROUP%20OF%20PICARD%20GROUP&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Mushtaq,%20Qaiser&rft.date=2012-05-01&rft.volume=32&rft.issue=3&rft.spage=842&rft.epage=850&rft.pages=842-850&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(12)60065-4&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201203002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082203209&rft_id=info:pmid/&rft_cqvip_id=42154565&rft_wanfj_id=sxwlxb_e201203002&rft_els_id=S0252960212600654&rfr_iscdi=true |