A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS

A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2011-09, Vol.31 (5), p.1813-1822
1. Verfasser: 牛原玲 张诚坚 段金桥
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1822
container_issue 5
container_start_page 1813
container_title Acta mathematica scientia
container_volume 31
creator 牛原玲 张诚坚 段金桥
description A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.
doi_str_mv 10.1016/S0252-9602(11)60363-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201105013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39621257</cqvip_id><wanfj_id>sxwlxb_e201105013</wanfj_id><els_id>S0252960211603639</els_id><sourcerecordid>sxwlxb_e201105013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4356910ddccb1bfc3272db741f8ea778dd8e2b0a86bced3823dea2e3f135df7d3</originalsourceid><addsrcrecordid>eNqFkV9vmzAUxa1plZa1-wiT2Fv6wOprBwNPEyNOawnBRuhDnyywTUuUQoKTpfv2c5q0r3u60tXvnHP_IPQV8HfAwG6WmATEjxkmU4BrhimjfvwBTSAIXRtH4Uc0eUc-oc_WrrDTETabIJV4c54lD_6c_-L5nOeVt6ySnyIT1YOXlqLipShyb1GUXl7kmch5UjqiSO-SZSXSs1jkFb8tC38uFgteOhORZB7_fZ9UTry8Qhdtvbbmy7leovsFr9I7PytuRZpkvqIB3vkzGrAYsNZKNdC0ipKQ6CacQRuZOgwjrSNDGlxHrFFG04hQbWpiaAs00G2o6SW6Pvke6r6t-0e5GvZj7xKlfTmsXxppCAbAAQbq2OmJ3YzDdm_sTj53Vpn1uu7NsLfSHTZmMYModmhwQtU4WDuaVm7G7rke_zroyDH5-gB5vK4EkK8PkEfdj5POuJ3_dGaUVnWmd7N3o1E7qYfuvw7fzslPQ_-47dxKb9E0ZgRIENJ_uB2QJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019696189</pqid></control><display><type>article</type><title>A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>牛原玲 张诚坚 段金桥</creator><creatorcontrib>牛原玲 张诚坚 段金桥</creatorcontrib><description>A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(11)60363-9</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>34K20 ; 60H35 ; 65C30 ; Complex systems ; complex systems under uncertainty ; Computer simulation ; Criteria ; Mathematical analysis ; Mathematical models ; mean-square exponential stability ; memory effects ; Nonlinearity ; numerical experiment ; Stability ; stochastic delay-integro-differential equations ; Stochasticity ; 复杂系统 ; 延迟积分方程 ; 时滞相关 ; 积分微分方程 ; 稳定性判据 ; 记忆效应 ; 随机延迟 ; 非线性</subject><ispartof>Acta mathematica scientia, 2011-09, Vol.31 (5), p.1813-1822</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-4356910ddccb1bfc3272db741f8ea778dd8e2b0a86bced3823dea2e3f135df7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(11)60363-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>牛原玲 张诚坚 段金桥</creatorcontrib><title>A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.</description><subject>34K20</subject><subject>60H35</subject><subject>65C30</subject><subject>Complex systems</subject><subject>complex systems under uncertainty</subject><subject>Computer simulation</subject><subject>Criteria</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mean-square exponential stability</subject><subject>memory effects</subject><subject>Nonlinearity</subject><subject>numerical experiment</subject><subject>Stability</subject><subject>stochastic delay-integro-differential equations</subject><subject>Stochasticity</subject><subject>复杂系统</subject><subject>延迟积分方程</subject><subject>时滞相关</subject><subject>积分微分方程</subject><subject>稳定性判据</subject><subject>记忆效应</subject><subject>随机延迟</subject><subject>非线性</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkV9vmzAUxa1plZa1-wiT2Fv6wOprBwNPEyNOawnBRuhDnyywTUuUQoKTpfv2c5q0r3u60tXvnHP_IPQV8HfAwG6WmATEjxkmU4BrhimjfvwBTSAIXRtH4Uc0eUc-oc_WrrDTETabIJV4c54lD_6c_-L5nOeVt6ySnyIT1YOXlqLipShyb1GUXl7kmch5UjqiSO-SZSXSs1jkFb8tC38uFgteOhORZB7_fZ9UTry8Qhdtvbbmy7leovsFr9I7PytuRZpkvqIB3vkzGrAYsNZKNdC0ipKQ6CacQRuZOgwjrSNDGlxHrFFG04hQbWpiaAs00G2o6SW6Pvke6r6t-0e5GvZj7xKlfTmsXxppCAbAAQbq2OmJ3YzDdm_sTj53Vpn1uu7NsLfSHTZmMYModmhwQtU4WDuaVm7G7rke_zroyDH5-gB5vK4EkK8PkEfdj5POuJ3_dGaUVnWmd7N3o1E7qYfuvw7fzslPQ_-47dxKb9E0ZgRIENJ_uB2QJQ</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>牛原玲 张诚坚 段金桥</creator><general>Elsevier Ltd</general><general>School of Mathematics and Statistics, Huazhong University of Science and Technology,Wuhan 430074, China</general><general>School of Mathematics, Central South University, Changsha 410075, China%School of Mathematics and Statistics, Huazhong University of Science and Technology,Wuhan 430074, China%Department of Applied Mathematics, Illinois Institute of Technology, Chicago IL 60616, USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20110901</creationdate><title>A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS</title><author>牛原玲 张诚坚 段金桥</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4356910ddccb1bfc3272db741f8ea778dd8e2b0a86bced3823dea2e3f135df7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>34K20</topic><topic>60H35</topic><topic>65C30</topic><topic>Complex systems</topic><topic>complex systems under uncertainty</topic><topic>Computer simulation</topic><topic>Criteria</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mean-square exponential stability</topic><topic>memory effects</topic><topic>Nonlinearity</topic><topic>numerical experiment</topic><topic>Stability</topic><topic>stochastic delay-integro-differential equations</topic><topic>Stochasticity</topic><topic>复杂系统</topic><topic>延迟积分方程</topic><topic>时滞相关</topic><topic>积分微分方程</topic><topic>稳定性判据</topic><topic>记忆效应</topic><topic>随机延迟</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>牛原玲 张诚坚 段金桥</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>牛原玲 张诚坚 段金桥</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>31</volume><issue>5</issue><spage>1813</spage><epage>1822</epage><pages>1813-1822</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(11)60363-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2011-09, Vol.31 (5), p.1813-1822
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201105013
source Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects 34K20
60H35
65C30
Complex systems
complex systems under uncertainty
Computer simulation
Criteria
Mathematical analysis
Mathematical models
mean-square exponential stability
memory effects
Nonlinearity
numerical experiment
Stability
stochastic delay-integro-differential equations
Stochasticity
复杂系统
延迟积分方程
时滞相关
积分微分方程
稳定性判据
记忆效应
随机延迟
非线性
title A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DELAY-DEPENDENT%20STABILITY%20CRITERION%20FOR%20NONLINEAR%20STOCHASTIC%20DELAY-INTEGRO-DIFFERENTIAL%20EQUATIONS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E7%89%9B%E5%8E%9F%E7%8E%B2%20%E5%BC%A0%E8%AF%9A%E5%9D%9A%20%E6%AE%B5%E9%87%91%E6%A1%A5&rft.date=2011-09-01&rft.volume=31&rft.issue=5&rft.spage=1813&rft.epage=1822&rft.pages=1813-1822&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(11)60363-9&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201105013%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019696189&rft_id=info:pmid/&rft_cqvip_id=39621257&rft_wanfj_id=sxwlxb_e201105013&rft_els_id=S0252960211603639&rfr_iscdi=true