MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS
The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of orde...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2011-03, Vol.31 (2), p.634-640 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 640 |
---|---|
container_issue | 2 |
container_start_page | 634 |
container_title | Acta mathematica scientia |
container_volume | 31 |
creator | Ostrovskii, M.I. |
description | The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2. |
doi_str_mv | 10.1016/s0252-9602(11)60263-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201102027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37196437</cqvip_id><wanfj_id>sxwlxb_e201102027</wanfj_id><els_id>S0252960211602634</els_id><sourcerecordid>sxwlxb_e201102027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</originalsourceid><addsrcrecordid>eNqFkE9Pg0AQxTdGE2v1I5gQT_WA7h_YhZNixZakpU2h5w27LJWKoGxr67d3K41XLzPJ5Pdm5j0ArhG8QxDRew2xi22fQjxA6NY0SmznBPSQy8wYeuwU9P6Qc3Ch9RoaHaZODzxOoziaLqfWcBaPwiSNZrGVzIM4juKRlS7CMLGi2HqK5sEijdLQCuJna2HKbGqNFsF8nFyCsyKrtLo69j5YvoTpcGxPZqNoGExs6VB_Y0sBhUOIJ3xX4gJiBCX1oGRejpmP8xzBwpVC5FT4EokCQUJxThhzhTRU4ZE-uO327rK6yOoVXzfbtjYXud7vqr3gCkOEIIaYGXbQsR9t87lVesPfSy1VVWW1araam9R86iPquAZ1O1S2jdatKvhHW75n7beBDhzlySE6foiOI8R_0-WO0T10OmU8f5Wq5VqWqpYqL1slNzxvyn833Bwvvzb16rM0lkQm34qyUpww86BDGPkB-deFcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019691645</pqid></control><display><type>article</type><title>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ostrovskii, M.I.</creator><creatorcontrib>Ostrovskii, M.I.</creatorcontrib><description>The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/s0252-9602(11)60263-4</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>05C05 ; Bipartite graph ; Congestion ; congestion spanning tree ; Estimates ; Graph theory ; Graphs ; Mathematical models ; minimum ; random graph ; 二部图 ; 最小生成树 ; 标准模型 ; 随机图 ; 顶点数</subject><ispartof>Acta mathematica scientia, 2011-03, Vol.31 (2), p.634-640</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</citedby><cites>FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(11)60263-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ostrovskii, M.I.</creatorcontrib><title>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.</description><subject>05C05</subject><subject>Bipartite graph</subject><subject>Congestion</subject><subject>congestion spanning tree</subject><subject>Estimates</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>minimum</subject><subject>random graph</subject><subject>二部图</subject><subject>最小生成树</subject><subject>标准模型</subject><subject>随机图</subject><subject>顶点数</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Pg0AQxTdGE2v1I5gQT_WA7h_YhZNixZakpU2h5w27LJWKoGxr67d3K41XLzPJ5Pdm5j0ArhG8QxDRew2xi22fQjxA6NY0SmznBPSQy8wYeuwU9P6Qc3Ch9RoaHaZODzxOoziaLqfWcBaPwiSNZrGVzIM4juKRlS7CMLGi2HqK5sEijdLQCuJna2HKbGqNFsF8nFyCsyKrtLo69j5YvoTpcGxPZqNoGExs6VB_Y0sBhUOIJ3xX4gJiBCX1oGRejpmP8xzBwpVC5FT4EokCQUJxThhzhTRU4ZE-uO327rK6yOoVXzfbtjYXud7vqr3gCkOEIIaYGXbQsR9t87lVesPfSy1VVWW1araam9R86iPquAZ1O1S2jdatKvhHW75n7beBDhzlySE6foiOI8R_0-WO0T10OmU8f5Wq5VqWqpYqL1slNzxvyn833Bwvvzb16rM0lkQm34qyUpww86BDGPkB-deFcg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ostrovskii, M.I.</creator><general>Elsevier Ltd</general><general>Department of Mathematics and Computer Science,St. John's University,8000 Utopia Parkway,Queens,NY 11439,USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20110301</creationdate><title>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</title><author>Ostrovskii, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>05C05</topic><topic>Bipartite graph</topic><topic>Congestion</topic><topic>congestion spanning tree</topic><topic>Estimates</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>minimum</topic><topic>random graph</topic><topic>二部图</topic><topic>最小生成树</topic><topic>标准模型</topic><topic>随机图</topic><topic>顶点数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostrovskii, M.I.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostrovskii, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>31</volume><issue>2</issue><spage>634</spage><epage>640</epage><pages>634-640</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/s0252-9602(11)60263-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2011-03, Vol.31 (2), p.634-640 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201102027 |
source | Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection |
subjects | 05C05 Bipartite graph Congestion congestion spanning tree Estimates Graph theory Graphs Mathematical models minimum random graph 二部图 最小生成树 标准模型 随机图 顶点数 |
title | MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MINIMUM%20CONGESTION%20SPANNING%20TREES%20IN%20BIPARTITE%20AND%20RANDOM%20GRAPHS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Ostrovskii,%20M.I.&rft.date=2011-03-01&rft.volume=31&rft.issue=2&rft.spage=634&rft.epage=640&rft.pages=634-640&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/s0252-9602(11)60263-4&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201102027%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019691645&rft_id=info:pmid/&rft_cqvip_id=37196437&rft_wanfj_id=sxwlxb_e201102027&rft_els_id=S0252960211602634&rfr_iscdi=true |