MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS

The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2011-03, Vol.31 (2), p.634-640
1. Verfasser: Ostrovskii, M.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 2
container_start_page 634
container_title Acta mathematica scientia
container_volume 31
creator Ostrovskii, M.I.
description The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.
doi_str_mv 10.1016/s0252-9602(11)60263-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201102027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37196437</cqvip_id><wanfj_id>sxwlxb_e201102027</wanfj_id><els_id>S0252960211602634</els_id><sourcerecordid>sxwlxb_e201102027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</originalsourceid><addsrcrecordid>eNqFkE9Pg0AQxTdGE2v1I5gQT_WA7h_YhZNixZakpU2h5w27LJWKoGxr67d3K41XLzPJ5Pdm5j0ArhG8QxDRew2xi22fQjxA6NY0SmznBPSQy8wYeuwU9P6Qc3Ch9RoaHaZODzxOoziaLqfWcBaPwiSNZrGVzIM4juKRlS7CMLGi2HqK5sEijdLQCuJna2HKbGqNFsF8nFyCsyKrtLo69j5YvoTpcGxPZqNoGExs6VB_Y0sBhUOIJ3xX4gJiBCX1oGRejpmP8xzBwpVC5FT4EokCQUJxThhzhTRU4ZE-uO327rK6yOoVXzfbtjYXud7vqr3gCkOEIIaYGXbQsR9t87lVesPfSy1VVWW1araam9R86iPquAZ1O1S2jdatKvhHW75n7beBDhzlySE6foiOI8R_0-WO0T10OmU8f5Wq5VqWqpYqL1slNzxvyn833Bwvvzb16rM0lkQm34qyUpww86BDGPkB-deFcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019691645</pqid></control><display><type>article</type><title>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ostrovskii, M.I.</creator><creatorcontrib>Ostrovskii, M.I.</creatorcontrib><description>The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/s0252-9602(11)60263-4</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>05C05 ; Bipartite graph ; Congestion ; congestion spanning tree ; Estimates ; Graph theory ; Graphs ; Mathematical models ; minimum ; random graph ; 二部图 ; 最小生成树 ; 标准模型 ; 随机图 ; 顶点数</subject><ispartof>Acta mathematica scientia, 2011-03, Vol.31 (2), p.634-640</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</citedby><cites>FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(11)60263-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ostrovskii, M.I.</creatorcontrib><title>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.</description><subject>05C05</subject><subject>Bipartite graph</subject><subject>Congestion</subject><subject>congestion spanning tree</subject><subject>Estimates</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>minimum</subject><subject>random graph</subject><subject>二部图</subject><subject>最小生成树</subject><subject>标准模型</subject><subject>随机图</subject><subject>顶点数</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Pg0AQxTdGE2v1I5gQT_WA7h_YhZNixZakpU2h5w27LJWKoGxr67d3K41XLzPJ5Pdm5j0ArhG8QxDRew2xi22fQjxA6NY0SmznBPSQy8wYeuwU9P6Qc3Ch9RoaHaZODzxOoziaLqfWcBaPwiSNZrGVzIM4juKRlS7CMLGi2HqK5sEijdLQCuJna2HKbGqNFsF8nFyCsyKrtLo69j5YvoTpcGxPZqNoGExs6VB_Y0sBhUOIJ3xX4gJiBCX1oGRejpmP8xzBwpVC5FT4EokCQUJxThhzhTRU4ZE-uO327rK6yOoVXzfbtjYXud7vqr3gCkOEIIaYGXbQsR9t87lVesPfSy1VVWW1araam9R86iPquAZ1O1S2jdatKvhHW75n7beBDhzlySE6foiOI8R_0-WO0T10OmU8f5Wq5VqWqpYqL1slNzxvyn833Bwvvzb16rM0lkQm34qyUpww86BDGPkB-deFcg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ostrovskii, M.I.</creator><general>Elsevier Ltd</general><general>Department of Mathematics and Computer Science,St. John's University,8000 Utopia Parkway,Queens,NY 11439,USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20110301</creationdate><title>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</title><author>Ostrovskii, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-cb0b4338b95c2f0210c680c78d2792dd10f5cbbd6b9c1bf10362d3775bc0c7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>05C05</topic><topic>Bipartite graph</topic><topic>Congestion</topic><topic>congestion spanning tree</topic><topic>Estimates</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>minimum</topic><topic>random graph</topic><topic>二部图</topic><topic>最小生成树</topic><topic>标准模型</topic><topic>随机图</topic><topic>顶点数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostrovskii, M.I.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostrovskii, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>31</volume><issue>2</issue><spage>634</spage><epage>640</epage><pages>634-640</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/s0252-9602(11)60263-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2011-03, Vol.31 (2), p.634-640
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201102027
source Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection
subjects 05C05
Bipartite graph
Congestion
congestion spanning tree
Estimates
Graph theory
Graphs
Mathematical models
minimum
random graph
二部图
最小生成树
标准模型
随机图
顶点数
title MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MINIMUM%20CONGESTION%20SPANNING%20TREES%20IN%20BIPARTITE%20AND%20RANDOM%20GRAPHS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Ostrovskii,%20M.I.&rft.date=2011-03-01&rft.volume=31&rft.issue=2&rft.spage=634&rft.epage=640&rft.pages=634-640&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/s0252-9602(11)60263-4&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201102027%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019691645&rft_id=info:pmid/&rft_cqvip_id=37196437&rft_wanfj_id=sxwlxb_e201102027&rft_els_id=S0252960211602634&rfr_iscdi=true