A DEGENERACY THEOREM FOR MEROMORPHIC MAPPINGS WITH TRUNCATED MULTIPLICITIES
In this article, we prove a degeneracy theorem for three linearly non-degenerate meromorphic mappings from Cn into PN (C), sharing 2N + 2 hyperplanes in general position, counted with multiplicities truncated by 2.
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2011-03, Vol.31 (2), p.549-560 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 2 |
container_start_page | 549 |
container_title | Acta mathematica scientia |
container_volume | 31 |
creator | 颜启明 陈志华 |
description | In this article, we prove a degeneracy theorem for three linearly non-degenerate meromorphic mappings from Cn into PN (C), sharing 2N + 2 hyperplanes in general position, counted with multiplicities truncated by 2. |
doi_str_mv | 10.1016/S0252-9602(11)60255-5 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201102019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37196429</cqvip_id><wanfj_id>sxwlxb_e201102019</wanfj_id><els_id>S0252960211602555</els_id><sourcerecordid>sxwlxb_e201102019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-827d31baec5f3a07b4c7cdd5c7c2a4889a03958095e5588f8fafb17fd22e80f93</originalsourceid><addsrcrecordid>eNqFkEFP4zAQha3VIm0X9iesFO0JDlk8Tp04p1UUTBvRNFWaCnGyHMdmw4YE4naBf49LEVcOMyONvjdP8xD6Cfg3YAjP15hQ4schJqcAZ25Q6tMvaAI0cmvMoq9o8oF8Q9-tvcNOR8LpBF0l3gWf8SUvk_TGq-a8KHnuXRall_OyyItyNc9SL09Wq2w5W3vXWTX3qnKzTJOKX3j5ZlFlq0WWZlXG1yfoyMjO6h_v8xhtLnmVzv1FMcvSZOGrgMLWZyRqAqilVtQEEkf1VEWqaajrRE4ZiyUOYspwTDWljBlmpKkhMg0hmmETB8fo7HD3SfZG9rfibtiNvXMU9vmpe66FJhgAu7ZnTw_swzg87rTdivvWKt11stfDzgoIIwioK-xQekDVOFg7aiMexvZeji8CsNgHLd6CFvsUBYB4C1pQp_tz0Gn38_9Wj8KqVvdKN-2o1VY0Q_vphV_vzn-H_vaxdS_VUv0zbadFEEEcTkkcvAL72Ijz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671357130</pqid></control><display><type>article</type><title>A DEGENERACY THEOREM FOR MEROMORPHIC MAPPINGS WITH TRUNCATED MULTIPLICITIES</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>颜启明 陈志华</creator><creatorcontrib>颜启明 陈志华</creatorcontrib><description>In this article, we prove a degeneracy theorem for three linearly non-degenerate meromorphic mappings from Cn into PN (C), sharing 2N + 2 hyperplanes in general position, counted with multiplicities truncated by 2.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(11)60255-5</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>30D35 ; 32H30 ; degeneracy theorem ; Hyperplanes ; Mapping ; meromorphic mapping ; Theorems ; Value distribution theory ; 亚纯映射 ; 简并性 ; 超平面</subject><ispartof>Acta mathematica scientia, 2011-03, Vol.31 (2), p.549-560</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-827d31baec5f3a07b4c7cdd5c7c2a4889a03958095e5588f8fafb17fd22e80f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0252960211602555$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>颜启明 陈志华</creatorcontrib><title>A DEGENERACY THEOREM FOR MEROMORPHIC MAPPINGS WITH TRUNCATED MULTIPLICITIES</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this article, we prove a degeneracy theorem for three linearly non-degenerate meromorphic mappings from Cn into PN (C), sharing 2N + 2 hyperplanes in general position, counted with multiplicities truncated by 2.</description><subject>30D35</subject><subject>32H30</subject><subject>degeneracy theorem</subject><subject>Hyperplanes</subject><subject>Mapping</subject><subject>meromorphic mapping</subject><subject>Theorems</subject><subject>Value distribution theory</subject><subject>亚纯映射</subject><subject>简并性</subject><subject>超平面</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP4zAQha3VIm0X9iesFO0JDlk8Tp04p1UUTBvRNFWaCnGyHMdmw4YE4naBf49LEVcOMyONvjdP8xD6Cfg3YAjP15hQ4schJqcAZ25Q6tMvaAI0cmvMoq9o8oF8Q9-tvcNOR8LpBF0l3gWf8SUvk_TGq-a8KHnuXRall_OyyItyNc9SL09Wq2w5W3vXWTX3qnKzTJOKX3j5ZlFlq0WWZlXG1yfoyMjO6h_v8xhtLnmVzv1FMcvSZOGrgMLWZyRqAqilVtQEEkf1VEWqaajrRE4ZiyUOYspwTDWljBlmpKkhMg0hmmETB8fo7HD3SfZG9rfibtiNvXMU9vmpe66FJhgAu7ZnTw_swzg87rTdivvWKt11stfDzgoIIwioK-xQekDVOFg7aiMexvZeji8CsNgHLd6CFvsUBYB4C1pQp_tz0Gn38_9Wj8KqVvdKN-2o1VY0Q_vphV_vzn-H_vaxdS_VUv0zbadFEEEcTkkcvAL72Ijz</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>颜启明 陈志华</creator><general>Elsevier Ltd</general><general>Department of Mathematics,Tongji University,Shanghai 200092,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20110301</creationdate><title>A DEGENERACY THEOREM FOR MEROMORPHIC MAPPINGS WITH TRUNCATED MULTIPLICITIES</title><author>颜启明 陈志华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-827d31baec5f3a07b4c7cdd5c7c2a4889a03958095e5588f8fafb17fd22e80f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>30D35</topic><topic>32H30</topic><topic>degeneracy theorem</topic><topic>Hyperplanes</topic><topic>Mapping</topic><topic>meromorphic mapping</topic><topic>Theorems</topic><topic>Value distribution theory</topic><topic>亚纯映射</topic><topic>简并性</topic><topic>超平面</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>颜启明 陈志华</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>颜启明 陈志华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DEGENERACY THEOREM FOR MEROMORPHIC MAPPINGS WITH TRUNCATED MULTIPLICITIES</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>31</volume><issue>2</issue><spage>549</spage><epage>560</epage><pages>549-560</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this article, we prove a degeneracy theorem for three linearly non-degenerate meromorphic mappings from Cn into PN (C), sharing 2N + 2 hyperplanes in general position, counted with multiplicities truncated by 2.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(11)60255-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2011-03, Vol.31 (2), p.549-560 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201102019 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | 30D35 32H30 degeneracy theorem Hyperplanes Mapping meromorphic mapping Theorems Value distribution theory 亚纯映射 简并性 超平面 |
title | A DEGENERACY THEOREM FOR MEROMORPHIC MAPPINGS WITH TRUNCATED MULTIPLICITIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DEGENERACY%20THEOREM%20FOR%20MEROMORPHIC%20MAPPINGS%20WITH%20TRUNCATED%20MULTIPLICITIES&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E9%A2%9C%E5%90%AF%E6%98%8E%20%E9%99%88%E5%BF%97%E5%8D%8E&rft.date=2011-03-01&rft.volume=31&rft.issue=2&rft.spage=549&rft.epage=560&rft.pages=549-560&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(11)60255-5&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201102019%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671357130&rft_id=info:pmid/&rft_cqvip_id=37196429&rft_wanfj_id=sxwlxb_e201102019&rft_els_id=S0252960211602555&rfr_iscdi=true |