SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING
In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited funct...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2005-10, Vol.25 (4), p.741-754 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 754 |
---|---|
container_issue | 4 |
container_start_page | 741 |
container_title | Acta mathematica scientia |
container_volume | 25 |
creator | 高洁欣 钱涛 |
description | In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained. |
doi_str_mv | 10.1016/S0252-9602(17)30214-X |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e200504019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>20374550</cqvip_id><wanfj_id>sxwlxb_e200504019</wanfj_id><els_id>S025296021730214X</els_id><sourcerecordid>sxwlxb_e200504019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9012de8b7ed6124f33038ca3c2106eb575ea40278b67d49ced42ead2b7f807393</originalsourceid><addsrcrecordid>eNqFUE1PwkAU3BhNRPQnmGw86aH69qPdcjKlFGhSiqGFcNv0Y4tFLNqi4L93-YhXTy-ZNzNv3iB0S-CRALGeIqAmNToW0HsiHhhQwo35GWoRU2gYbHGOWn-US3TVNEvQOmrxFkqjoROG4xBHzugl8MMBdsIe9qLYHzmxr_FxH3c1ZAT-yI-9Hu5PQ3e_iLAf4njo4cibeRMnwO5YG3hzPHMmvtMNvEhv4lg7XqOLIlk16uY022ja92J3aATjge86gZExLjY6KKG5slOhcotQXjAGzM4SllEClkpNYaqEAxV2aomcdzKVc6qSnKaisEGwDmujh6PvNqmKpFrI5fqrrvRF2ey2q10qFQUwgQPZc80jN6vXTVOrQn7U5XtS_0gCcl-qPJQq941JIuShVDnXuuejTulHvktVyyYrVaXDlLXKNjJfl_863J0uv66rxWepc6ZJ9laUKyUpMMFNE9gvqb-A6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>高洁欣 钱涛</creator><creatorcontrib>高洁欣 钱涛</creatorcontrib><description>In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(17)30214-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>30D10 ; 42B35 ; 62D05 ; harmonic analysis ; Paley-Wiener理论 ; Shannon sampling ; Shannon取样 ; sinc function ; Sinc函数 ; 误差估计 ; 谐函数分析</subject><ispartof>Acta mathematica scientia, 2005-10, Vol.25 (4), p.741-754</ispartof><rights>2005 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9012de8b7ed6124f33038ca3c2106eb575ea40278b67d49ced42ead2b7f807393</citedby><cites>FETCH-LOGICAL-c347t-9012de8b7ed6124f33038ca3c2106eb575ea40278b67d49ced42ead2b7f807393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(17)30214-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>高洁欣 钱涛</creatorcontrib><title>SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.</description><subject>30D10</subject><subject>42B35</subject><subject>62D05</subject><subject>harmonic analysis</subject><subject>Paley-Wiener理论</subject><subject>Shannon sampling</subject><subject>Shannon取样</subject><subject>sinc function</subject><subject>Sinc函数</subject><subject>误差估计</subject><subject>谐函数分析</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PwkAU3BhNRPQnmGw86aH69qPdcjKlFGhSiqGFcNv0Y4tFLNqi4L93-YhXTy-ZNzNv3iB0S-CRALGeIqAmNToW0HsiHhhQwo35GWoRU2gYbHGOWn-US3TVNEvQOmrxFkqjoROG4xBHzugl8MMBdsIe9qLYHzmxr_FxH3c1ZAT-yI-9Hu5PQ3e_iLAf4njo4cibeRMnwO5YG3hzPHMmvtMNvEhv4lg7XqOLIlk16uY022ja92J3aATjge86gZExLjY6KKG5slOhcotQXjAGzM4SllEClkpNYaqEAxV2aomcdzKVc6qSnKaisEGwDmujh6PvNqmKpFrI5fqrrvRF2ey2q10qFQUwgQPZc80jN6vXTVOrQn7U5XtS_0gCcl-qPJQq941JIuShVDnXuuejTulHvktVyyYrVaXDlLXKNjJfl_863J0uv66rxWepc6ZJ9laUKyUpMMFNE9gvqb-A6w</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>高洁欣 钱涛</creator><general>Elsevier Ltd</general><general>Faculty of Science and Technology, University of Macau, Macau</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20051001</creationdate><title>SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING</title><author>高洁欣 钱涛</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9012de8b7ed6124f33038ca3c2106eb575ea40278b67d49ced42ead2b7f807393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>30D10</topic><topic>42B35</topic><topic>62D05</topic><topic>harmonic analysis</topic><topic>Paley-Wiener理论</topic><topic>Shannon sampling</topic><topic>Shannon取样</topic><topic>sinc function</topic><topic>Sinc函数</topic><topic>误差估计</topic><topic>谐函数分析</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>高洁欣 钱涛</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>高洁欣 钱涛</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>25</volume><issue>4</issue><spage>741</spage><epage>754</epage><pages>741-754</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(17)30214-X</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2005-10, Vol.25 (4), p.741-754 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e200504019 |
source | ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
subjects | 30D10 42B35 62D05 harmonic analysis Paley-Wiener理论 Shannon sampling Shannon取样 sinc function Sinc函数 误差估计 谐函数分析 |
title | SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHANNON%20SAMPLING%20AND%20ESTIMATION%20OF%20BAND-LIMITED%20FUNCTIONS%20IN%20THE%20SEVERAL%20COMPLEX%20VARIABLES%20SETTING&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E9%AB%98%E6%B4%81%E6%AC%A3%20%E9%92%B1%E6%B6%9B&rft.date=2005-10-01&rft.volume=25&rft.issue=4&rft.spage=741&rft.epage=754&rft.pages=741-754&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(17)30214-X&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e200504019%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=20374550&rft_wanfj_id=sxwlxb_e200504019&rft_els_id=S025296021730214X&rfr_iscdi=true |