Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction

This paper characterizes the limits of a large system of interacting particles distributed on the real line. The interaction occurring among neighbors involves two kinds of independent actions with different rates. This system is a generalization of the voter process, of which each particle is of ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2022-03, Vol.43 (2), p.195-208
1. Verfasser: Zhao, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 195
container_title Chinese annals of mathematics. Serie B
container_volume 43
creator Zhao, Tong
description This paper characterizes the limits of a large system of interacting particles distributed on the real line. The interaction occurring among neighbors involves two kinds of independent actions with different rates. This system is a generalization of the voter process, of which each particle is of type A or a . Under suitable scaling, the local proportion functions of A particles converge to continuous functions which solve a class of stochastic partial differential equations driven by Fisher-Wright white noise. To obtain the convergence, the tightness of these functions is derived from the moment estimate method.
doi_str_mv 10.1007/s11401-022-0311-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e202202003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e202202003</wanfj_id><sourcerecordid>sxnk_e202202003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-bdeed87161c14f3f363d2421af924f17357617b40f6ee0d48fd79c1b521258953</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AC1fR9zKTzMxSih-Fgop1HdKZpKZ2MjWZUttfb8qIXbl6cDn38jiEXCLcIEB-GxAzQAqMUUgR6e6IDLAQQAUTeEwGwDijJS_LU3IWwgIAs5zDgLxObGO7kLQmeXaa1rbRLtjWqWUydp32quqsmycvyne2WurkbRs63YRkY7uPZLppaahUjP_Y1p2TE6OWQV_83iF5f7ifjp7o5PlxPLqb0Iql0NFZrXVd5CiwwsykJhVpzTKGypQsM5inPBeYzzIwQmuos8LUeVnhjDNkvCh5OiTX_e5GOaPcXC7atY9_Bxm-3afULLoABpBG8qonV779WuvQHVAmuChYiVBGCnuq8m0IXhu58rZRfisR5N6x7B3LuCv3juUudljfCZF1c-0Py_-XfgCJs34l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656829109</pqid></control><display><type>article</type><title>Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Tong</creator><creatorcontrib>Zhao, Tong</creatorcontrib><description>This paper characterizes the limits of a large system of interacting particles distributed on the real line. The interaction occurring among neighbors involves two kinds of independent actions with different rates. This system is a generalization of the voter process, of which each particle is of type A or a . Under suitable scaling, the local proportion functions of A particles converge to continuous functions which solve a class of stochastic partial differential equations driven by Fisher-Wright white noise. To obtain the convergence, the tightness of these functions is derived from the moment estimate method.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-022-0311-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Continuity (mathematics) ; Convergence ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Tightness ; White noise</subject><ispartof>Chinese annals of mathematics. Serie B, 2022-03, Vol.43 (2), p.195-208</ispartof><rights>The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2022</rights><rights>The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-bdeed87161c14f3f363d2421af924f17357617b40f6ee0d48fd79c1b521258953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-022-0311-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-022-0311-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Tong</creatorcontrib><title>Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>This paper characterizes the limits of a large system of interacting particles distributed on the real line. The interaction occurring among neighbors involves two kinds of independent actions with different rates. This system is a generalization of the voter process, of which each particle is of type A or a . Under suitable scaling, the local proportion functions of A particles converge to continuous functions which solve a class of stochastic partial differential equations driven by Fisher-Wright white noise. To obtain the convergence, the tightness of these functions is derived from the moment estimate method.</description><subject>Applications of Mathematics</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Tightness</subject><subject>White noise</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN2AC1fR9zKTzMxSih-Fgop1HdKZpKZ2MjWZUttfb8qIXbl6cDn38jiEXCLcIEB-GxAzQAqMUUgR6e6IDLAQQAUTeEwGwDijJS_LU3IWwgIAs5zDgLxObGO7kLQmeXaa1rbRLtjWqWUydp32quqsmycvyne2WurkbRs63YRkY7uPZLppaahUjP_Y1p2TE6OWQV_83iF5f7ifjp7o5PlxPLqb0Iql0NFZrXVd5CiwwsykJhVpzTKGypQsM5inPBeYzzIwQmuos8LUeVnhjDNkvCh5OiTX_e5GOaPcXC7atY9_Bxm-3afULLoABpBG8qonV779WuvQHVAmuChYiVBGCnuq8m0IXhu58rZRfisR5N6x7B3LuCv3juUudljfCZF1c-0Py_-XfgCJs34l</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhao, Tong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>School of Mathematical Sciences,Fudan University,Shanghai 200433,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220301</creationdate><title>Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction</title><author>Zhao, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-bdeed87161c14f3f363d2421af924f17357617b40f6ee0d48fd79c1b521258953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Tightness</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tong</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><spage>195</spage><epage>208</epage><pages>195-208</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>This paper characterizes the limits of a large system of interacting particles distributed on the real line. The interaction occurring among neighbors involves two kinds of independent actions with different rates. This system is a generalization of the voter process, of which each particle is of type A or a . Under suitable scaling, the local proportion functions of A particles converge to continuous functions which solve a class of stochastic partial differential equations driven by Fisher-Wright white noise. To obtain the convergence, the tightness of these functions is derived from the moment estimate method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-022-0311-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2022-03, Vol.43 (2), p.195-208
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e202202003
source SpringerNature Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Continuity (mathematics)
Convergence
Mathematics
Mathematics and Statistics
Partial differential equations
Tightness
White noise
title Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limits%20of%20One-dimensional%20Interacting%20Particle%20Systems%20with%20Two-scale%20Interaction&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Zhao,%20Tong&rft.date=2022-03-01&rft.volume=43&rft.issue=2&rft.spage=195&rft.epage=208&rft.pages=195-208&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-022-0311-z&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e202202003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656829109&rft_id=info:pmid/&rft_wanfj_id=sxnk_e202202003&rfr_iscdi=true