On Local Singularities in Ideal Potential Flows with Free Surface

Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2019-11, Vol.40 (6), p.925-948
Hauptverfasser: Liu, Jian-Guo, Pego, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 6
container_start_page 925
container_title Chinese annals of mathematics. Serie B
container_volume 40
creator Liu, Jian-Guo
Pego, Robert L.
description Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tension and gravity, the authors review existing works that describe “splash singularities”, singular hyperbolic solutions related to jet formation and “flip-through”, and a recent construction of a singular free surface by Zubarev and Karabut that however involves unbounded negative pressure. The authors illustrate some of these phenomena with numerical computations of 2D flow based upon a conformal mapping formulation. Numerical tests with a different kind of initial data suggest the possibility that corner singularities may form in an unstable way from specially prepared initial data.
doi_str_mv 10.1007/s11401-019-0167-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201906004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201906004</wanfj_id><sourcerecordid>sxnk_e201906004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-82ce8555f6a578c922c6a57a7327ba6a7ac6df62e1e17e19e80c720210558e4d3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCB0-rM9lNsnssxWqhUKF6DjGdrVtrtia7VPvrTVmhJw_DDMP33jCPsWuEOwRQ9wExB0wBy1hSpfsTNsBCQiq5xFM2AC54WoqyPGcXIawBMFcCBmw0d8mssWaTLGq36jbG121NIaldMl1SXD83Lbm2jtNk0-xCsqvb92TiiZJF5ytj6ZKdVWYT6OqvD9nr5OFl_JTO5o_T8WiW2iwv2rTglgohRCWNUIUtObeHyaiMqzcjjTJWLivJCQkVYUkFWMWBIwhRUL7Mhuy2990ZVxm30uum8y5e1OHbfWji8XeQAHkkb3py65uvjkJ7RHmGQuQCoIwU9pT1TQieKr319afxPxpBHzLVfaY6-upDpnofNbzXhMi6Ffmj8_-iX20Hd6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315545009</pqid></control><display><type>article</type><title>On Local Singularities in Ideal Potential Flows with Free Surface</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Jian-Guo ; Pego, Robert L.</creator><creatorcontrib>Liu, Jian-Guo ; Pego, Robert L.</creatorcontrib><description>Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tension and gravity, the authors review existing works that describe “splash singularities”, singular hyperbolic solutions related to jet formation and “flip-through”, and a recent construction of a singular free surface by Zubarev and Karabut that however involves unbounded negative pressure. The authors illustrate some of these phenomena with numerical computations of 2D flow based upon a conformal mapping formulation. Numerical tests with a different kind of initial data suggest the possibility that corner singularities may form in an unstable way from specially prepared initial data.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-019-0167-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Boundary value problems ; Conformal mapping ; Euler-Lagrange equation ; Free surfaces ; Mathematics ; Mathematics and Statistics ; Potential flow ; Singularity (mathematics) ; Surface tension ; Two dimensional flow ; Water waves ; Well posed problems</subject><ispartof>Chinese annals of mathematics. Serie B, 2019-11, Vol.40 (6), p.925-948</ispartof><rights>The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-82ce8555f6a578c922c6a57a7327ba6a7ac6df62e1e17e19e80c720210558e4d3</citedby><cites>FETCH-LOGICAL-c348t-82ce8555f6a578c922c6a57a7327ba6a7ac6df62e1e17e19e80c720210558e4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-019-0167-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-019-0167-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Jian-Guo</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><title>On Local Singularities in Ideal Potential Flows with Free Surface</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tension and gravity, the authors review existing works that describe “splash singularities”, singular hyperbolic solutions related to jet formation and “flip-through”, and a recent construction of a singular free surface by Zubarev and Karabut that however involves unbounded negative pressure. The authors illustrate some of these phenomena with numerical computations of 2D flow based upon a conformal mapping formulation. Numerical tests with a different kind of initial data suggest the possibility that corner singularities may form in an unstable way from specially prepared initial data.</description><subject>Applications of Mathematics</subject><subject>Boundary value problems</subject><subject>Conformal mapping</subject><subject>Euler-Lagrange equation</subject><subject>Free surfaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential flow</subject><subject>Singularity (mathematics)</subject><subject>Surface tension</subject><subject>Two dimensional flow</subject><subject>Water waves</subject><subject>Well posed problems</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuCB0-rM9lNsnssxWqhUKF6DjGdrVtrtia7VPvrTVmhJw_DDMP33jCPsWuEOwRQ9wExB0wBy1hSpfsTNsBCQiq5xFM2AC54WoqyPGcXIawBMFcCBmw0d8mssWaTLGq36jbG121NIaldMl1SXD83Lbm2jtNk0-xCsqvb92TiiZJF5ytj6ZKdVWYT6OqvD9nr5OFl_JTO5o_T8WiW2iwv2rTglgohRCWNUIUtObeHyaiMqzcjjTJWLivJCQkVYUkFWMWBIwhRUL7Mhuy2990ZVxm30uum8y5e1OHbfWji8XeQAHkkb3py65uvjkJ7RHmGQuQCoIwU9pT1TQieKr319afxPxpBHzLVfaY6-upDpnofNbzXhMi6Ffmj8_-iX20Hd6U</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Liu, Jian-Guo</creator><creator>Pego, Robert L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, USA%Department of Mathematical Sciences and Center for Nonlinear Analysis, Carnegie Mellon University,Pittsburgh, Pennsylvania, PA 12513, USA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20191101</creationdate><title>On Local Singularities in Ideal Potential Flows with Free Surface</title><author>Liu, Jian-Guo ; Pego, Robert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-82ce8555f6a578c922c6a57a7327ba6a7ac6df62e1e17e19e80c720210558e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Boundary value problems</topic><topic>Conformal mapping</topic><topic>Euler-Lagrange equation</topic><topic>Free surfaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential flow</topic><topic>Singularity (mathematics)</topic><topic>Surface tension</topic><topic>Two dimensional flow</topic><topic>Water waves</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jian-Guo</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jian-Guo</au><au>Pego, Robert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Local Singularities in Ideal Potential Flows with Free Surface</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>40</volume><issue>6</issue><spage>925</spage><epage>948</epage><pages>925-948</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tension and gravity, the authors review existing works that describe “splash singularities”, singular hyperbolic solutions related to jet formation and “flip-through”, and a recent construction of a singular free surface by Zubarev and Karabut that however involves unbounded negative pressure. The authors illustrate some of these phenomena with numerical computations of 2D flow based upon a conformal mapping formulation. Numerical tests with a different kind of initial data suggest the possibility that corner singularities may form in an unstable way from specially prepared initial data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-019-0167-z</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2019-11, Vol.40 (6), p.925-948
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e201906004
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Boundary value problems
Conformal mapping
Euler-Lagrange equation
Free surfaces
Mathematics
Mathematics and Statistics
Potential flow
Singularity (mathematics)
Surface tension
Two dimensional flow
Water waves
Well posed problems
title On Local Singularities in Ideal Potential Flows with Free Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Local%20Singularities%20in%20Ideal%20Potential%20Flows%20with%20Free%20Surface&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Liu,%20Jian-Guo&rft.date=2019-11-01&rft.volume=40&rft.issue=6&rft.spage=925&rft.epage=948&rft.pages=925-948&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-019-0167-z&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201906004%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315545009&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201906004&rfr_iscdi=true