Constrained LQ Problem with a Random Jump and Application to Portfolio Selection

This paper deals with a constrained stochastic linear-quadratic (LQ for short) optimal control problem where the control is constrained in a closed cone. The state process is governed by a controlled SDE with random coefficients. Moreover, there is a random jump of the state process. In mathematical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2018-09, Vol.39 (5), p.829-848
1. Verfasser: Dong, Yuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 848
container_issue 5
container_start_page 829
container_title Chinese annals of mathematics. Serie B
container_volume 39
creator Dong, Yuchao
description This paper deals with a constrained stochastic linear-quadratic (LQ for short) optimal control problem where the control is constrained in a closed cone. The state process is governed by a controlled SDE with random coefficients. Moreover, there is a random jump of the state process. In mathematical finance, the random jump often represents the default of a counter party. Thanks to the Itô-Tanaka formula, optimal control and optimal value can be obtained by solutions of a system of backward stochastic differential equations (BSDEs for short). The solvability of the BSDEs is obtained by solving a recursive system of BSDEs driven by the Brownian motions. The author also applies the result to the mean variance portfolio selection problem in which the stock price can be affected by the default of a counterparty.
doi_str_mv 10.1007/s11401-018-0099-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201805005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201805005</wanfj_id><sourcerecordid>sxnk_e201805005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-7d218838812a475cfcf98dc9652fcadfd1c352ff26a2ffbf2915ad61d6896083</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssWAVmHGa1F5WFU9VokD3luvYEEjtYKfi8fU4ClJXbGZGo3PvjC4hpwgXCDC9jIgTwAyQZwBCZD97ZIS8hKxkJe6TEbCCZaIQ4pAcxfgGgJNpASOynHsXu6BqZyq6eKTL4NeN2dDPunulij4pV_kNvd9uWppGOmvbptaqq72jnadLHzrrm9rTZ9MY3a-PyYFVTTQnf31MVtdXq_lttni4uZvPFpnOJ7zLphVDznPOkan0ibbaCl5pURbMalXZCnWeRstKleraMoGFqkqsSi5K4PmYnA-2n8pZ5V7km98Glw7K-OXepWEpCSgAikSeDWQb_MfWxG6HMkSR57nA3g8HSgcfYzBWtqHeqPAtEWSfsBwSlslX9gnLn6RhgyYm1r2YsHP-X_QLTUp93A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119333918</pqid></control><display><type>article</type><title>Constrained LQ Problem with a Random Jump and Application to Portfolio Selection</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Dong, Yuchao</creator><creatorcontrib>Dong, Yuchao</creatorcontrib><description>This paper deals with a constrained stochastic linear-quadratic (LQ for short) optimal control problem where the control is constrained in a closed cone. The state process is governed by a controlled SDE with random coefficients. Moreover, there is a random jump of the state process. In mathematical finance, the random jump often represents the default of a counter party. Thanks to the Itô-Tanaka formula, optimal control and optimal value can be obtained by solutions of a system of backward stochastic differential equations (BSDEs for short). The solvability of the BSDEs is obtained by solving a recursive system of BSDEs driven by the Brownian motions. The author also applies the result to the mean variance portfolio selection problem in which the stock price can be affected by the default of a counterparty.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-018-0099-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Differential equations ; Economic models ; Markov analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Optimal control</subject><ispartof>Chinese annals of mathematics. Serie B, 2018-09, Vol.39 (5), p.829-848</ispartof><rights>Fudan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-7d218838812a475cfcf98dc9652fcadfd1c352ff26a2ffbf2915ad61d6896083</citedby><cites>FETCH-LOGICAL-c348t-7d218838812a475cfcf98dc9652fcadfd1c352ff26a2ffbf2915ad61d6896083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-018-0099-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-018-0099-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dong, Yuchao</creatorcontrib><title>Constrained LQ Problem with a Random Jump and Application to Portfolio Selection</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>This paper deals with a constrained stochastic linear-quadratic (LQ for short) optimal control problem where the control is constrained in a closed cone. The state process is governed by a controlled SDE with random coefficients. Moreover, there is a random jump of the state process. In mathematical finance, the random jump often represents the default of a counter party. Thanks to the Itô-Tanaka formula, optimal control and optimal value can be obtained by solutions of a system of backward stochastic differential equations (BSDEs for short). The solvability of the BSDEs is obtained by solving a recursive system of BSDEs driven by the Brownian motions. The author also applies the result to the mean variance portfolio selection problem in which the stock price can be affected by the default of a counterparty.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Economic models</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimal control</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssWAVmHGa1F5WFU9VokD3luvYEEjtYKfi8fU4ClJXbGZGo3PvjC4hpwgXCDC9jIgTwAyQZwBCZD97ZIS8hKxkJe6TEbCCZaIQ4pAcxfgGgJNpASOynHsXu6BqZyq6eKTL4NeN2dDPunulij4pV_kNvd9uWppGOmvbptaqq72jnadLHzrrm9rTZ9MY3a-PyYFVTTQnf31MVtdXq_lttni4uZvPFpnOJ7zLphVDznPOkan0ibbaCl5pURbMalXZCnWeRstKleraMoGFqkqsSi5K4PmYnA-2n8pZ5V7km98Glw7K-OXepWEpCSgAikSeDWQb_MfWxG6HMkSR57nA3g8HSgcfYzBWtqHeqPAtEWSfsBwSlslX9gnLn6RhgyYm1r2YsHP-X_QLTUp93A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Dong, Yuchao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Mathematics, Fudan University, Shanghai 200433, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180901</creationdate><title>Constrained LQ Problem with a Random Jump and Application to Portfolio Selection</title><author>Dong, Yuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-7d218838812a475cfcf98dc9652fcadfd1c352ff26a2ffbf2915ad61d6896083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Economic models</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yuchao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained LQ Problem with a Random Jump and Application to Portfolio Selection</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>39</volume><issue>5</issue><spage>829</spage><epage>848</epage><pages>829-848</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>This paper deals with a constrained stochastic linear-quadratic (LQ for short) optimal control problem where the control is constrained in a closed cone. The state process is governed by a controlled SDE with random coefficients. Moreover, there is a random jump of the state process. In mathematical finance, the random jump often represents the default of a counter party. Thanks to the Itô-Tanaka formula, optimal control and optimal value can be obtained by solutions of a system of backward stochastic differential equations (BSDEs for short). The solvability of the BSDEs is obtained by solving a recursive system of BSDEs driven by the Brownian motions. The author also applies the result to the mean variance portfolio selection problem in which the stock price can be affected by the default of a counterparty.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-018-0099-z</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2018-09, Vol.39 (5), p.829-848
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e201805005
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Differential equations
Economic models
Markov analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Optimal control
title Constrained LQ Problem with a Random Jump and Application to Portfolio Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20LQ%20Problem%20with%20a%20Random%20Jump%20and%20Application%20to%20Portfolio%20Selection&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Dong,%20Yuchao&rft.date=2018-09-01&rft.volume=39&rft.issue=5&rft.spage=829&rft.epage=848&rft.pages=829-848&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-018-0099-z&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201805005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119333918&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201805005&rfr_iscdi=true