Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions

The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2018-03, Vol.39 (2), p.315-334
Hauptverfasser: Beirão Da Veiga, Lourenço, Brezzi, Franco, Dassi, Franco, Marini, Luisa Donatelia, Russo, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 2
container_start_page 315
container_title Chinese annals of mathematics. Serie B
container_volume 39
creator Beirão Da Veiga, Lourenço
Brezzi, Franco
Dassi, Franco
Marini, Luisa Donatelia
Russo, Alessandro
description The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.
doi_str_mv 10.1007/s11401-018-1066-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201802009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201802009</wanfj_id><sourcerecordid>sxnk_e201802009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-80bdd2ca8a7f7063b4ad03d1269deb934505d66155eff040ec1744c295d2fb633</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvBg6fq96VJ2h5lzikMdnB6DWmbzswu7ZIO3b83s4JePH3w8rzvBw8hlwg3CJDeekQGGANmMYIQMTsiI8wExIIKPCYjoJzGOc_zU3Lm_RoAWcphRBbP2mlbmc70--jVuH6nmmja6I22vY_q1kUzbbX7DhvT9aaMptud6k1rfWRstHxzWkf3JvD-kJ2Tk1o1Xl_83DF5eZguJ4_xfDF7mtzN4zJhWR9nUFQVLVWm0joFkRRMVZBUSEVe6SJPGAdeCYGc67oGBrrElLGS5ryidSGSZEyuh90PZWtlV3Ld7pwNH6X_tO9S02ACKEAeyKuB7Fy73Wnf_6KYh0_IKaaBwoEqXeu907XsnNkot5cI8mBYDoZl2JUHw5KFDh06PrB2pd2f5X9LX2dbfTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993415217</pqid></control><display><type>article</type><title>Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Beirão Da Veiga, Lourenço ; Brezzi, Franco ; Dassi, Franco ; Marini, Luisa Donatelia ; Russo, Alessandro</creator><creatorcontrib>Beirão Da Veiga, Lourenço ; Brezzi, Franco ; Dassi, Franco ; Marini, Luisa Donatelia ; Russo, Alessandro</creatorcontrib><description>The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-018-1066-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Elliptic functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Chinese annals of mathematics. Serie B, 2018-03, Vol.39 (2), p.315-334</ispartof><rights>Fudan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-80bdd2ca8a7f7063b4ad03d1269deb934505d66155eff040ec1744c295d2fb633</citedby><cites>FETCH-LOGICAL-c348t-80bdd2ca8a7f7063b4ad03d1269deb934505d66155eff040ec1744c295d2fb633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-018-1066-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-018-1066-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Beirão Da Veiga, Lourenço</creatorcontrib><creatorcontrib>Brezzi, Franco</creatorcontrib><creatorcontrib>Dassi, Franco</creatorcontrib><creatorcontrib>Marini, Luisa Donatelia</creatorcontrib><creatorcontrib>Russo, Alessandro</creatorcontrib><title>Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.</description><subject>Applications of Mathematics</subject><subject>Elliptic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvBg6fq96VJ2h5lzikMdnB6DWmbzswu7ZIO3b83s4JePH3w8rzvBw8hlwg3CJDeekQGGANmMYIQMTsiI8wExIIKPCYjoJzGOc_zU3Lm_RoAWcphRBbP2mlbmc70--jVuH6nmmja6I22vY_q1kUzbbX7DhvT9aaMptud6k1rfWRstHxzWkf3JvD-kJ2Tk1o1Xl_83DF5eZguJ4_xfDF7mtzN4zJhWR9nUFQVLVWm0joFkRRMVZBUSEVe6SJPGAdeCYGc67oGBrrElLGS5ryidSGSZEyuh90PZWtlV3Ld7pwNH6X_tO9S02ACKEAeyKuB7Fy73Wnf_6KYh0_IKaaBwoEqXeu907XsnNkot5cI8mBYDoZl2JUHw5KFDh06PrB2pd2f5X9LX2dbfTs</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Beirão Da Veiga, Lourenço</creator><creator>Brezzi, Franco</creator><creator>Dassi, Franco</creator><creator>Marini, Luisa Donatelia</creator><creator>Russo, Alessandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>IMATI CNR, Via Ferrata 1, I-27100 Pavia, Italy%IMATI CNR, Via Ferrata 1, I-27100 Pavia, Italy%Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi 53, I-20153,Milano, Italy%Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, I-27100 Pavia, Italy</general><general>IMATI CNR,Via Ferrata 1, I-27100 Pavia, Italy</general><general>Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi 53, I-20153, Milano, Italy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180301</creationdate><title>Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions</title><author>Beirão Da Veiga, Lourenço ; Brezzi, Franco ; Dassi, Franco ; Marini, Luisa Donatelia ; Russo, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-80bdd2ca8a7f7063b4ad03d1269deb934505d66155eff040ec1744c295d2fb633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Elliptic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beirão Da Veiga, Lourenço</creatorcontrib><creatorcontrib>Brezzi, Franco</creatorcontrib><creatorcontrib>Dassi, Franco</creatorcontrib><creatorcontrib>Marini, Luisa Donatelia</creatorcontrib><creatorcontrib>Russo, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beirão Da Veiga, Lourenço</au><au>Brezzi, Franco</au><au>Dassi, Franco</au><au>Marini, Luisa Donatelia</au><au>Russo, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>315</spage><epage>334</epage><pages>315-334</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-018-1066-4</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2018-03, Vol.39 (2), p.315-334
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e201802009
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Elliptic functions
Mathematics
Mathematics and Statistics
title Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serendipity%20Virtual%20Elements%20for%20General%20Elliptic%20Equations%20in%20Three%20Dimensions&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Beir%C3%A3o%20Da%20Veiga,%20Louren%C3%A7o&rft.date=2018-03-01&rft.volume=39&rft.issue=2&rft.spage=315&rft.epage=334&rft.pages=315-334&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-018-1066-4&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201802009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993415217&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201802009&rfr_iscdi=true