On the First Hochschild Cohomology of Admissible Algebras
The aim of this paper is to investigate the first Hochschild cohomology of ad- missible algebras which can be regarded as a generalization of basic algebras. For this purpose, the authors study differential operators on an admissible algebra. Firstly, dif- ferential operators from a path algebra to...
Gespeichert in:
Veröffentlicht in: | Chinese annals of mathematics. Serie B 2015-11, Vol.36 (6), p.1027-1042 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1042 |
---|---|
container_issue | 6 |
container_start_page | 1027 |
container_title | Chinese annals of mathematics. Serie B |
container_volume | 36 |
creator | Li, Fang Tan, Dezhan |
description | The aim of this paper is to investigate the first Hochschild cohomology of ad- missible algebras which can be regarded as a generalization of basic algebras. For this purpose, the authors study differential operators on an admissible algebra. Firstly, dif- ferential operators from a path algebra to its quotient algebra as an admissible algebra ave discussed. Based on this discussion, the first cohomology with admissible algebras as coefficient modules is characterized, including their dimension formula. Besides, for planar quivers, the k-linear bases of the first cohomology of acyclic complete monomial algebras and acyclic truncated quiver algebras are constructed over the field k of characteristic 0. |
doi_str_mv | 10.1007/s11401-015-0919-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201506012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666794295</cqvip_id><wanfj_id>sxnk_e201506012</wanfj_id><sourcerecordid>sxnk_e201506012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1b869f6fd8e9688f694a7e7b35817fc71630221608b65b629d2c37c738b8fd073</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9giFibDvXbix1hVtEWq1AVmKw87SUljsIug_55UqWBjusv3naN7CLlFeEAA-RgRU0AKmFHQqCk_IxNUAqhgAs_JBFjGqM60viRXMW4BMJUZTIje9Mm-scmiDXGfrHzZxLJpuyqZ-8bvfOfrQ-JdMqt2bYxt0dlk1tW2CHm8Jhcu76K9Od0peV08vcxXdL1ZPs9na1ryVO4pFkpoJ1ylrBZKOaHTXFpZ8EyhdKVEwYExFKAKkRWC6YqVXJaSq0K5CiSfkvsx9yvvXd7XZus_Qz80mvjdvxnLhp9BALKBxJEsg48xWGfeQ7vLw8EgmONKZlzJDIY5rmT44LDRiQPb1zb8xf8n3Z2KGt_XH4P32ySEkDplOuM_vzZzXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the First Hochschild Cohomology of Admissible Algebras</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Fang ; Tan, Dezhan</creator><creatorcontrib>Li, Fang ; Tan, Dezhan</creatorcontrib><description>The aim of this paper is to investigate the first Hochschild cohomology of ad- missible algebras which can be regarded as a generalization of basic algebras. For this purpose, the authors study differential operators on an admissible algebra. Firstly, dif- ferential operators from a path algebra to its quotient algebra as an admissible algebra ave discussed. Based on this discussion, the first cohomology with admissible algebras as coefficient modules is characterized, including their dimension formula. Besides, for planar quivers, the k-linear bases of the first cohomology of acyclic complete monomial algebras and acyclic truncated quiver algebras are constructed over the field k of characteristic 0.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-015-0919-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Hochschild ; Mathematics ; Mathematics and Statistics ; 上同调 ; 代数系数 ; 同调代数 ; 容许 ; 微分算子代数 ; 构造特征 ; 维数公式</subject><ispartof>Chinese annals of mathematics. Serie B, 2015-11, Vol.36 (6), p.1027-1042</ispartof><rights>Fudan University and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1b869f6fd8e9688f694a7e7b35817fc71630221608b65b629d2c37c738b8fd073</citedby><cites>FETCH-LOGICAL-c347t-1b869f6fd8e9688f694a7e7b35817fc71630221608b65b629d2c37c738b8fd073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87055X/87055X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-015-0919-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-015-0919-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Tan, Dezhan</creatorcontrib><title>On the First Hochschild Cohomology of Admissible Algebras</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><addtitle>Chinese Annals of Mathematics</addtitle><description>The aim of this paper is to investigate the first Hochschild cohomology of ad- missible algebras which can be regarded as a generalization of basic algebras. For this purpose, the authors study differential operators on an admissible algebra. Firstly, dif- ferential operators from a path algebra to its quotient algebra as an admissible algebra ave discussed. Based on this discussion, the first cohomology with admissible algebras as coefficient modules is characterized, including their dimension formula. Besides, for planar quivers, the k-linear bases of the first cohomology of acyclic complete monomial algebras and acyclic truncated quiver algebras are constructed over the field k of characteristic 0.</description><subject>Applications of Mathematics</subject><subject>Hochschild</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>上同调</subject><subject>代数系数</subject><subject>同调代数</subject><subject>容许</subject><subject>微分算子代数</subject><subject>构造特征</subject><subject>维数公式</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9giFibDvXbix1hVtEWq1AVmKw87SUljsIug_55UqWBjusv3naN7CLlFeEAA-RgRU0AKmFHQqCk_IxNUAqhgAs_JBFjGqM60viRXMW4BMJUZTIje9Mm-scmiDXGfrHzZxLJpuyqZ-8bvfOfrQ-JdMqt2bYxt0dlk1tW2CHm8Jhcu76K9Od0peV08vcxXdL1ZPs9na1ryVO4pFkpoJ1ylrBZKOaHTXFpZ8EyhdKVEwYExFKAKkRWC6YqVXJaSq0K5CiSfkvsx9yvvXd7XZus_Qz80mvjdvxnLhp9BALKBxJEsg48xWGfeQ7vLw8EgmONKZlzJDIY5rmT44LDRiQPb1zb8xf8n3Z2KGt_XH4P32ySEkDplOuM_vzZzXQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Li, Fang</creator><creator>Tan, Dezhan</creator><general>Springer Berlin Heidelberg</general><general>Department of Mathematics, Zhejiang University, Hangzhou 310027, China%College of Mathematics and Information Science, Shangqiu Normal University, Shangqiu 476000, Henan,China</general><general>Department of Mathematics, Zhejiang University, Hangzhou 310027, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151101</creationdate><title>On the First Hochschild Cohomology of Admissible Algebras</title><author>Li, Fang ; Tan, Dezhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1b869f6fd8e9688f694a7e7b35817fc71630221608b65b629d2c37c738b8fd073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>Hochschild</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>上同调</topic><topic>代数系数</topic><topic>同调代数</topic><topic>容许</topic><topic>微分算子代数</topic><topic>构造特征</topic><topic>维数公式</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Tan, Dezhan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Tan, Dezhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the First Hochschild Cohomology of Admissible Algebras</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><addtitle>Chinese Annals of Mathematics</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>36</volume><issue>6</issue><spage>1027</spage><epage>1042</epage><pages>1027-1042</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>The aim of this paper is to investigate the first Hochschild cohomology of ad- missible algebras which can be regarded as a generalization of basic algebras. For this purpose, the authors study differential operators on an admissible algebra. Firstly, dif- ferential operators from a path algebra to its quotient algebra as an admissible algebra ave discussed. Based on this discussion, the first cohomology with admissible algebras as coefficient modules is characterized, including their dimension formula. Besides, for planar quivers, the k-linear bases of the first cohomology of acyclic complete monomial algebras and acyclic truncated quiver algebras are constructed over the field k of characteristic 0.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-015-0919-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9599 |
ispartof | Chinese annals of mathematics. Serie B, 2015-11, Vol.36 (6), p.1027-1042 |
issn | 0252-9599 1860-6261 |
language | eng |
recordid | cdi_wanfang_journals_sxnk_e201506012 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Hochschild Mathematics Mathematics and Statistics 上同调 代数系数 同调代数 容许 微分算子代数 构造特征 维数公式 |
title | On the First Hochschild Cohomology of Admissible Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20First%20Hochschild%20Cohomology%20of%20Admissible%20Algebras&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Li,%20Fang&rft.date=2015-11-01&rft.volume=36&rft.issue=6&rft.spage=1027&rft.epage=1042&rft.pages=1027-1042&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-015-0919-3&rft_dat=%3Cwanfang_jour_cross%3Esxnk_e201506012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666794295&rft_wanfj_id=sxnk_e201506012&rfr_iscdi=true |