Embedding periodic maps on surfaces into those on S3

Call a periodic map h on the closed orientable surface Σ g extendable if h extends to a periodic map over the pair ( S 3 ,Σ g ) for possible embeddings e : Σ g → S 3 . The authors determine the extendabilities for all periodical maps on Σ 2 . The results involve various orientation preserving/revers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2015, Vol.36 (2), p.161-180
Hauptverfasser: Guo, Yu, Wang, Chao, Wang, Shicheng, Zhang, Yimu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 161
container_title Chinese annals of mathematics. Serie B
container_volume 36
creator Guo, Yu
Wang, Chao
Wang, Shicheng
Zhang, Yimu
description Call a periodic map h on the closed orientable surface Σ g extendable if h extends to a periodic map over the pair ( S 3 ,Σ g ) for possible embeddings e : Σ g → S 3 . The authors determine the extendabilities for all periodical maps on Σ 2 . The results involve various orientation preserving/reversing behalves of the periodical maps on the pair ( S 3 ,Σ g ). To do this the authors first list all periodic maps on Σ 2 , and indeed the authors exhibit each of them as a composition of primary and explicit symmetries, like rotations, reflections and antipodal maps, which itself should be interesting. A by-product is that for each even g , the maximum order periodic map on Σ g is extendable, which contrasts sharply with the situation in the orientation preserving category.
doi_str_mv 10.1007/s11401-015-0890-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_sprin</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201502001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201502001</wanfj_id><sourcerecordid>sxnk_e201502001</sourcerecordid><originalsourceid>FETCH-LOGICAL-s751-1139e171ebbc99eeef312c89a858b6ba755b6e19f2720a676c39084b445b5fa73</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoWFd_gLfePEVnkiZpjrKsH7Dgwb2HpJ2uXd20NLso--ttqeBpYHjeGZ6XsVuEewQwDwmxAOSAikNpgZ_OWIalBq6FxnOWgVCCW2XtJbtKaQeAhVGQsWK1D1TXbdzmPQ1tV7dVvvd9yruYp-PQ-IpS3sZDlx8-ukTT-l1es4vGfyW6-ZsLtnlabZYvfP32_Lp8XPNkFHJEaQkNUgiVtUTUSBRVaX2pyqCDN0oFTWgbYQR4bXQlLZRFKAoVVOONXLC7-ey3j42PW7frjkMcH7r0Ez8didEWxKgykmImUz-MKjT8owhuKsjNBbkx4qaC3En-AlamV4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Embedding periodic maps on surfaces into those on S3</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Yu ; Wang, Chao ; Wang, Shicheng ; Zhang, Yimu</creator><creatorcontrib>Guo, Yu ; Wang, Chao ; Wang, Shicheng ; Zhang, Yimu</creatorcontrib><description>Call a periodic map h on the closed orientable surface Σ g extendable if h extends to a periodic map over the pair ( S 3 ,Σ g ) for possible embeddings e : Σ g → S 3 . The authors determine the extendabilities for all periodical maps on Σ 2 . The results involve various orientation preserving/reversing behalves of the periodical maps on the pair ( S 3 ,Σ g ). To do this the authors first list all periodic maps on Σ 2 , and indeed the authors exhibit each of them as a composition of primary and explicit symmetries, like rotations, reflections and antipodal maps, which itself should be interesting. A by-product is that for each even g , the maximum order periodic map on Σ g is extendable, which contrasts sharply with the situation in the orientation preserving category.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-015-0890-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Chinese annals of mathematics. Serie B, 2015, Vol.36 (2), p.161-180</ispartof><rights>Fudan University and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-015-0890-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-015-0890-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Wang, Shicheng</creatorcontrib><creatorcontrib>Zhang, Yimu</creatorcontrib><title>Embedding periodic maps on surfaces into those on S3</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>Call a periodic map h on the closed orientable surface Σ g extendable if h extends to a periodic map over the pair ( S 3 ,Σ g ) for possible embeddings e : Σ g → S 3 . The authors determine the extendabilities for all periodical maps on Σ 2 . The results involve various orientation preserving/reversing behalves of the periodical maps on the pair ( S 3 ,Σ g ). To do this the authors first list all periodic maps on Σ 2 , and indeed the authors exhibit each of them as a composition of primary and explicit symmetries, like rotations, reflections and antipodal maps, which itself should be interesting. A by-product is that for each even g , the maximum order periodic map on Σ g is extendable, which contrasts sharply with the situation in the orientation preserving category.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMoWFd_gLfePEVnkiZpjrKsH7Dgwb2HpJ2uXd20NLso--ttqeBpYHjeGZ6XsVuEewQwDwmxAOSAikNpgZ_OWIalBq6FxnOWgVCCW2XtJbtKaQeAhVGQsWK1D1TXbdzmPQ1tV7dVvvd9yruYp-PQ-IpS3sZDlx8-ukTT-l1es4vGfyW6-ZsLtnlabZYvfP32_Lp8XPNkFHJEaQkNUgiVtUTUSBRVaX2pyqCDN0oFTWgbYQR4bXQlLZRFKAoVVOONXLC7-ey3j42PW7frjkMcH7r0Ez8didEWxKgykmImUz-MKjT8owhuKsjNBbkx4qaC3En-AlamV4k</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Guo, Yu</creator><creator>Wang, Chao</creator><creator>Wang, Shicheng</creator><creator>Zhang, Yimu</creator><general>Springer Berlin Heidelberg</general><general>School of Mathematical Sciences, Peking University, Beijing 100871, China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2015</creationdate><title>Embedding periodic maps on surfaces into those on S3</title><author>Guo, Yu ; Wang, Chao ; Wang, Shicheng ; Zhang, Yimu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s751-1139e171ebbc99eeef312c89a858b6ba755b6e19f2720a676c39084b445b5fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Wang, Shicheng</creatorcontrib><creatorcontrib>Zhang, Yimu</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yu</au><au>Wang, Chao</au><au>Wang, Shicheng</au><au>Zhang, Yimu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding periodic maps on surfaces into those on S3</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2015</date><risdate>2015</risdate><volume>36</volume><issue>2</issue><spage>161</spage><epage>180</epage><pages>161-180</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>Call a periodic map h on the closed orientable surface Σ g extendable if h extends to a periodic map over the pair ( S 3 ,Σ g ) for possible embeddings e : Σ g → S 3 . The authors determine the extendabilities for all periodical maps on Σ 2 . The results involve various orientation preserving/reversing behalves of the periodical maps on the pair ( S 3 ,Σ g ). To do this the authors first list all periodic maps on Σ 2 , and indeed the authors exhibit each of them as a composition of primary and explicit symmetries, like rotations, reflections and antipodal maps, which itself should be interesting. A by-product is that for each even g , the maximum order periodic map on Σ g is extendable, which contrasts sharply with the situation in the orientation preserving category.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-015-0890-z</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2015, Vol.36 (2), p.161-180
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e201502001
source SpringerNature Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Mathematics
Mathematics and Statistics
title Embedding periodic maps on surfaces into those on S3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20periodic%20maps%20on%20surfaces%20into%20those%20on%20S3&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Guo,%20Yu&rft.date=2015&rft.volume=36&rft.issue=2&rft.spage=161&rft.epage=180&rft.pages=161-180&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-015-0890-z&rft_dat=%3Cwanfang_jour_sprin%3Esxnk_e201502001%3C/wanfang_jour_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201502001&rfr_iscdi=true