Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations

This paper examines the feasibility and the efficiency of a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for simulating open channel flows in engineering practice. A MRT-LBM scheme for 2-D shallow water flows taking into account of the bed slope and the friction is proposed. The scheme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrodynamics. Series B 2016-06, Vol.28 (3), p.400-410
1. Verfasser: 张春泽 程永光 吴家阳 刁伟
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 3
container_start_page 400
container_title Journal of hydrodynamics. Series B
container_volume 28
creator 张春泽 程永光 吴家阳 刁伟
description This paper examines the feasibility and the efficiency of a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for simulating open channel flows in engineering practice. A MRT-LBM scheme for 2-D shallow water flows taking into account of the bed slope and the friction is proposed. The scheme's reliability is verified by benchmark problems and the simulation capability is improved by implementing the scheme on a graphic processing unit (GPU). We use the method to analyze the flow characteristics in the connecting open channel of two cascaded hydropower stations. The flow fields and parameters such as the water depth, the flow rate, and the side-weir discharge, under different operating conditions, are analyzed. The factors affecting the accuracy and the effi- ciency are discussed. The results are found to be reasonable and may be used as a guidance in the project design. It is shown that the GPU-implemented MRT-LBM on a fine mesh can efficiently simulate two-dimensional shallow water flows in engineering practice.
doi_str_mv 10.1016/S1001-6058(16)60643-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sdlxyjyjz_e201603006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669584772</cqvip_id><wanfj_id>sdlxyjyjz_e201603006</wanfj_id><els_id>S1001605816606431</els_id><sourcerecordid>sdlxyjyjz_e201603006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c51ca3cc0ee5f3908ce2a0d62a78041ee0a3da9635e8802989bc62e5bc27c773</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIJErhIyBZnIrEwni99npPCCr-SZE40Lvlzs4mjjZ2ajsN6afHyRY45jRj-fdmnuZV1WsO7zlw9eEXB-C1AqmvuHqrQLWi5k-qC647XYNom6el_4s8r16ktAYQqof2orILm7NDYp_DlB821nuW3GY32eyCZ2FkeUUsbMkzXJVPmtg4hT3DUHrMzi9Z3geGNqEdaGCrwxDDNuwpspRPM9LL6tlop0SvHutldfP1y83193rx89uP60-LGlutco2SoxWIQCRH0YNGaiwMqrGdhpYTgRWD7ZWQpDU0ve5vUTUkb7HpsOvEZfVuHru3frR-adZhF31ZaNIw_T6sD-sHQ005FwgAVfCrGd_GcLejlM3GJaRpsp7CLhmuhZRSN6WeRznXxRg_mpAzijGkFGk02-g2Nh4MB3PMypyyMscgTHmdsjK86NSsS4X3S4r_3Z8TfpyFVC5774owoSOPNLhY8jFDcGcnvHm0vAp-eVe2__OsVC9123WN-AN70rh2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811896317</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations</title><source>Springer Online Journals Complete</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>张春泽 程永光 吴家阳 刁伟</creator><creatorcontrib>张春泽 程永光 吴家阳 刁伟</creatorcontrib><description>This paper examines the feasibility and the efficiency of a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for simulating open channel flows in engineering practice. A MRT-LBM scheme for 2-D shallow water flows taking into account of the bed slope and the friction is proposed. The scheme's reliability is verified by benchmark problems and the simulation capability is improved by implementing the scheme on a graphic processing unit (GPU). We use the method to analyze the flow characteristics in the connecting open channel of two cascaded hydropower stations. The flow fields and parameters such as the water depth, the flow rate, and the side-weir discharge, under different operating conditions, are analyzed. The factors affecting the accuracy and the effi- ciency are discussed. The results are found to be reasonable and may be used as a guidance in the project design. It is shown that the GPU-implemented MRT-LBM on a fine mesh can efficiently simulate two-dimensional shallow water flows in engineering practice.</description><identifier>ISSN: 1001-6058</identifier><identifier>EISSN: 1878-0342</identifier><identifier>DOI: 10.1016/S1001-6058(16)60643-1</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>cascaded hydropower station ; Channels ; Computer simulation ; Engineering ; Engineering Fluid Dynamics ; Freshwater ; graphic processing unit (GPU) ; Hydroelectric power stations ; Hydrology/Water Resources ; Joining ; lattice Boltzmann method (LBM) ; Lattices ; Mathematical models ; Numerical and Computational Physics ; Open channel flow ; Shallow water ; shallow water equation ; Simulation ; transient process ; 格子 ; 梯级水电站 ; 模拟 ; 连接 ; 通道</subject><ispartof>Journal of hydrodynamics. Series B, 2016-06, Vol.28 (3), p.400-410</ispartof><rights>2016 Publishing House for Journal of Hydrodynamics</rights><rights>China Ship Scientific Research Center 2016</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c51ca3cc0ee5f3908ce2a0d62a78041ee0a3da9635e8802989bc62e5bc27c773</citedby><cites>FETCH-LOGICAL-c486t-c51ca3cc0ee5f3908ce2a0d62a78041ee0a3da9635e8802989bc62e5bc27c773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86648X/86648X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1001-6058(16)60643-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1001-6058(16)60643-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,41493,42562,46000,51324</link.rule.ids></links><search><creatorcontrib>张春泽 程永光 吴家阳 刁伟</creatorcontrib><title>Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations</title><title>Journal of hydrodynamics. Series B</title><addtitle>J Hydrodyn</addtitle><addtitle>Journal of Hydrodynamics</addtitle><description>This paper examines the feasibility and the efficiency of a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for simulating open channel flows in engineering practice. A MRT-LBM scheme for 2-D shallow water flows taking into account of the bed slope and the friction is proposed. The scheme's reliability is verified by benchmark problems and the simulation capability is improved by implementing the scheme on a graphic processing unit (GPU). We use the method to analyze the flow characteristics in the connecting open channel of two cascaded hydropower stations. The flow fields and parameters such as the water depth, the flow rate, and the side-weir discharge, under different operating conditions, are analyzed. The factors affecting the accuracy and the effi- ciency are discussed. The results are found to be reasonable and may be used as a guidance in the project design. It is shown that the GPU-implemented MRT-LBM on a fine mesh can efficiently simulate two-dimensional shallow water flows in engineering practice.</description><subject>cascaded hydropower station</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Freshwater</subject><subject>graphic processing unit (GPU)</subject><subject>Hydroelectric power stations</subject><subject>Hydrology/Water Resources</subject><subject>Joining</subject><subject>lattice Boltzmann method (LBM)</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Numerical and Computational Physics</subject><subject>Open channel flow</subject><subject>Shallow water</subject><subject>shallow water equation</subject><subject>Simulation</subject><subject>transient process</subject><subject>格子</subject><subject>梯级水电站</subject><subject>模拟</subject><subject>连接</subject><subject>通道</subject><issn>1001-6058</issn><issn>1878-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxVcIJErhIyBZnIrEwni99npPCCr-SZE40Lvlzs4mjjZ2ajsN6afHyRY45jRj-fdmnuZV1WsO7zlw9eEXB-C1AqmvuHqrQLWi5k-qC647XYNom6el_4s8r16ktAYQqof2orILm7NDYp_DlB821nuW3GY32eyCZ2FkeUUsbMkzXJVPmtg4hT3DUHrMzi9Z3geGNqEdaGCrwxDDNuwpspRPM9LL6tlop0SvHutldfP1y83193rx89uP60-LGlutco2SoxWIQCRH0YNGaiwMqrGdhpYTgRWD7ZWQpDU0ve5vUTUkb7HpsOvEZfVuHru3frR-adZhF31ZaNIw_T6sD-sHQ005FwgAVfCrGd_GcLejlM3GJaRpsp7CLhmuhZRSN6WeRznXxRg_mpAzijGkFGk02-g2Nh4MB3PMypyyMscgTHmdsjK86NSsS4X3S4r_3Z8TfpyFVC5774owoSOPNLhY8jFDcGcnvHm0vAp-eVe2__OsVC9123WN-AN70rh2</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>张春泽 程永光 吴家阳 刁伟</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160601</creationdate><title>Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations</title><author>张春泽 程永光 吴家阳 刁伟</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c51ca3cc0ee5f3908ce2a0d62a78041ee0a3da9635e8802989bc62e5bc27c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cascaded hydropower station</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Freshwater</topic><topic>graphic processing unit (GPU)</topic><topic>Hydroelectric power stations</topic><topic>Hydrology/Water Resources</topic><topic>Joining</topic><topic>lattice Boltzmann method (LBM)</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Numerical and Computational Physics</topic><topic>Open channel flow</topic><topic>Shallow water</topic><topic>shallow water equation</topic><topic>Simulation</topic><topic>transient process</topic><topic>格子</topic><topic>梯级水电站</topic><topic>模拟</topic><topic>连接</topic><topic>通道</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张春泽 程永光 吴家阳 刁伟</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of hydrodynamics. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张春泽 程永光 吴家阳 刁伟</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations</atitle><jtitle>Journal of hydrodynamics. Series B</jtitle><stitle>J Hydrodyn</stitle><addtitle>Journal of Hydrodynamics</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>28</volume><issue>3</issue><spage>400</spage><epage>410</epage><pages>400-410</pages><issn>1001-6058</issn><eissn>1878-0342</eissn><abstract>This paper examines the feasibility and the efficiency of a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for simulating open channel flows in engineering practice. A MRT-LBM scheme for 2-D shallow water flows taking into account of the bed slope and the friction is proposed. The scheme's reliability is verified by benchmark problems and the simulation capability is improved by implementing the scheme on a graphic processing unit (GPU). We use the method to analyze the flow characteristics in the connecting open channel of two cascaded hydropower stations. The flow fields and parameters such as the water depth, the flow rate, and the side-weir discharge, under different operating conditions, are analyzed. The factors affecting the accuracy and the effi- ciency are discussed. The results are found to be reasonable and may be used as a guidance in the project design. It is shown that the GPU-implemented MRT-LBM on a fine mesh can efficiently simulate two-dimensional shallow water flows in engineering practice.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1001-6058(16)60643-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-6058
ispartof Journal of hydrodynamics. Series B, 2016-06, Vol.28 (3), p.400-410
issn 1001-6058
1878-0342
language eng
recordid cdi_wanfang_journals_sdlxyjyjz_e201603006
source Springer Online Journals Complete; ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection
subjects cascaded hydropower station
Channels
Computer simulation
Engineering
Engineering Fluid Dynamics
Freshwater
graphic processing unit (GPU)
Hydroelectric power stations
Hydrology/Water Resources
Joining
lattice Boltzmann method (LBM)
Lattices
Mathematical models
Numerical and Computational Physics
Open channel flow
Shallow water
shallow water equation
Simulation
transient process
格子
梯级水电站
模拟
连接
通道
title Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20of%20the%20open%20channel%20flow%20connecting%20two%20cascaded%20hydropower%20stations&rft.jtitle=Journal%20of%20hydrodynamics.%20Series%20B&rft.au=%E5%BC%A0%E6%98%A5%E6%B3%BD%20%E7%A8%8B%E6%B0%B8%E5%85%89%20%E5%90%B4%E5%AE%B6%E9%98%B3%20%E5%88%81%E4%BC%9F&rft.date=2016-06-01&rft.volume=28&rft.issue=3&rft.spage=400&rft.epage=410&rft.pages=400-410&rft.issn=1001-6058&rft.eissn=1878-0342&rft_id=info:doi/10.1016/S1001-6058(16)60643-1&rft_dat=%3Cwanfang_jour_proqu%3Esdlxyjyjz_e201603006%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811896317&rft_id=info:pmid/&rft_cqvip_id=669584772&rft_wanfj_id=sdlxyjyjz_e201603006&rft_els_id=S1001605816606431&rfr_iscdi=true