Experimental study of velocity distributions in the transition region of pipes

The accuracy of an ultrasonic flowmeter meaurement depends on the profile-linear average velocity. But this velocity in the transition region is not available at the present. In this article, the velocity in the transition region in pipes is studied by experimental methods. The Particle Image Veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrodynamics. Series B 2011-10, Vol.23 (5), p.643-648
Hauptverfasser: LIU, Yong-hui, DU, Guang-sheng, LIU, Li-ping, SHAO, Zhu-feng, ZHAI, Cheng-yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 5
container_start_page 643
container_title Journal of hydrodynamics. Series B
container_volume 23
creator LIU, Yong-hui
DU, Guang-sheng
LIU, Li-ping
SHAO, Zhu-feng
ZHAI, Cheng-yuan
description The accuracy of an ultrasonic flowmeter meaurement depends on the profile-linear average velocity. But this velocity in the transition region is not available at the present. In this article, the velocity in the transition region in pipes is studied by experimental methods. The Particle Image Velocimetry (PIV) is used to measure the flow field in the transition region in pipes, and the measured results from PIV are in good agreement with the Westerwell's experimental data. Based on the experimental data of PIV, the curves of the profile-linear average velocity in the transition region against the Reynolds number in the range from 2 000 to 20 000 are obtained, and it is shown that the coefficient k is constant when the Reynolds number is in the range of 2 000–2 400 and 6 000–20 000, and the coefficient k is increasing when the Reynolds number is in the range of 2 400–6 000. The results of this article can be used to improve the measurement accuracy of the ultrasonic flowmeters and as a theoretical basis for the research on the transition flow.
doi_str_mv 10.1016/S1001-6058(10)60160-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sdlxyjyjz_e201105014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sdlxyjyjz_e201105014</wanfj_id><els_id>S1001605810601606</els_id><sourcerecordid>sdlxyjyjz_e201105014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c39c13d6267d7581e650aeb0de38c641a76d0f6976cf4f210c75d5a892f6ce803</originalsourceid><addsrcrecordid>eNqFkc1O3TAQhaOqSKWUR6iUXalE2pn82M4KIQQFCZUFsLaMPbn1VXCC7QDp09chRd2V1VhH3xmPzsmyzwjfEJB9v0YALBg04gDhK0sSFOxdtouCiwKqunyf3q_Ih-xjCFuAirVQ72Y_T59H8vaeXFR9HuJk5nzo8kfqB23jnBsbord3U7SDC7l1efxFefTKBbtIuafNMpJltCOFT9lOp_pA-3_nXnZ7dnpzcl5cXv24ODm-LHTdiFjoqtVYGVYybngjkFgDiu7AUCU0q1FxZqBjLWe6q7sSQfPGNEq0Zcc0Caj2ssN175NynXIbuR0m79KPMpj-ed7O29-SSkCEBrBO-JcVH_3wMFGI8t4GTX2vHA1TkC1wbGtgC3nwXxI551iJCnhCmxXVfgjBUyfHFKTys0SQSzHypRi5pL5IL8VIlnxs9YXEuw35f8e_ZTxajZSSfbTJGLQlp8lYTzpKM9g3NvwBVJmlpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777138307</pqid></control><display><type>article</type><title>Experimental study of velocity distributions in the transition region of pipes</title><source>SpringerLink</source><source>Elsevier ScienceDirect Journals Collection</source><source>Alma/SFX Local Collection</source><creator>LIU, Yong-hui ; DU, Guang-sheng ; LIU, Li-ping ; SHAO, Zhu-feng ; ZHAI, Cheng-yuan</creator><creatorcontrib>LIU, Yong-hui ; DU, Guang-sheng ; LIU, Li-ping ; SHAO, Zhu-feng ; ZHAI, Cheng-yuan</creatorcontrib><description>The accuracy of an ultrasonic flowmeter meaurement depends on the profile-linear average velocity. But this velocity in the transition region is not available at the present. In this article, the velocity in the transition region in pipes is studied by experimental methods. The Particle Image Velocimetry (PIV) is used to measure the flow field in the transition region in pipes, and the measured results from PIV are in good agreement with the Westerwell's experimental data. Based on the experimental data of PIV, the curves of the profile-linear average velocity in the transition region against the Reynolds number in the range from 2 000 to 20 000 are obtained, and it is shown that the coefficient k is constant when the Reynolds number is in the range of 2 000–2 400 and 6 000–20 000, and the coefficient k is increasing when the Reynolds number is in the range of 2 400–6 000. The results of this article can be used to improve the measurement accuracy of the ultrasonic flowmeters and as a theoretical basis for the research on the transition flow.</description><identifier>ISSN: 1001-6058</identifier><identifier>EISSN: 1878-0342</identifier><identifier>DOI: 10.1016/S1001-6058(10)60160-6</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Coefficients ; Engineering ; Engineering Fluid Dynamics ; Flowmeters ; Fluid dynamics ; Fluid flow ; Hydrology/Water Resources ; Numerical and Computational Physics ; Particle image velocimetry ; Particle Image Velocimetry (PIV) ; Pipe ; Reynolds number ; Simulation ; the profile-linear average velocity ; Transition flow ; transition region ; ultrasonic flowmeter</subject><ispartof>Journal of hydrodynamics. Series B, 2011-10, Vol.23 (5), p.643-648</ispartof><rights>2011 Publishing House for Journal of Hydrodynamics</rights><rights>China Ship Scientific Research Center 2011</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c39c13d6267d7581e650aeb0de38c641a76d0f6976cf4f210c75d5a892f6ce803</citedby><cites>FETCH-LOGICAL-c458t-c39c13d6267d7581e650aeb0de38c641a76d0f6976cf4f210c75d5a892f6ce803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sdlxyjyjz-e/sdlxyjyjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1001-6058(10)60160-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1001-6058(10)60160-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,41487,42556,45994,51318</link.rule.ids></links><search><creatorcontrib>LIU, Yong-hui</creatorcontrib><creatorcontrib>DU, Guang-sheng</creatorcontrib><creatorcontrib>LIU, Li-ping</creatorcontrib><creatorcontrib>SHAO, Zhu-feng</creatorcontrib><creatorcontrib>ZHAI, Cheng-yuan</creatorcontrib><title>Experimental study of velocity distributions in the transition region of pipes</title><title>Journal of hydrodynamics. Series B</title><addtitle>J Hydrodyn</addtitle><description>The accuracy of an ultrasonic flowmeter meaurement depends on the profile-linear average velocity. But this velocity in the transition region is not available at the present. In this article, the velocity in the transition region in pipes is studied by experimental methods. The Particle Image Velocimetry (PIV) is used to measure the flow field in the transition region in pipes, and the measured results from PIV are in good agreement with the Westerwell's experimental data. Based on the experimental data of PIV, the curves of the profile-linear average velocity in the transition region against the Reynolds number in the range from 2 000 to 20 000 are obtained, and it is shown that the coefficient k is constant when the Reynolds number is in the range of 2 000–2 400 and 6 000–20 000, and the coefficient k is increasing when the Reynolds number is in the range of 2 400–6 000. The results of this article can be used to improve the measurement accuracy of the ultrasonic flowmeters and as a theoretical basis for the research on the transition flow.</description><subject>Coefficients</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flowmeters</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrology/Water Resources</subject><subject>Numerical and Computational Physics</subject><subject>Particle image velocimetry</subject><subject>Particle Image Velocimetry (PIV)</subject><subject>Pipe</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>the profile-linear average velocity</subject><subject>Transition flow</subject><subject>transition region</subject><subject>ultrasonic flowmeter</subject><issn>1001-6058</issn><issn>1878-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3TAQhaOqSKWUR6iUXalE2pn82M4KIQQFCZUFsLaMPbn1VXCC7QDp09chRd2V1VhH3xmPzsmyzwjfEJB9v0YALBg04gDhK0sSFOxdtouCiwKqunyf3q_Ih-xjCFuAirVQ72Y_T59H8vaeXFR9HuJk5nzo8kfqB23jnBsbord3U7SDC7l1efxFefTKBbtIuafNMpJltCOFT9lOp_pA-3_nXnZ7dnpzcl5cXv24ODm-LHTdiFjoqtVYGVYybngjkFgDiu7AUCU0q1FxZqBjLWe6q7sSQfPGNEq0Zcc0Caj2ssN175NynXIbuR0m79KPMpj-ed7O29-SSkCEBrBO-JcVH_3wMFGI8t4GTX2vHA1TkC1wbGtgC3nwXxI551iJCnhCmxXVfgjBUyfHFKTys0SQSzHypRi5pL5IL8VIlnxs9YXEuw35f8e_ZTxajZSSfbTJGLQlp8lYTzpKM9g3NvwBVJmlpg</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>LIU, Yong-hui</creator><creator>DU, Guang-sheng</creator><creator>LIU, Li-ping</creator><creator>SHAO, Zhu-feng</creator><creator>ZHAI, Cheng-yuan</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>School of Energy and Power Engineering, Shandong University, Jinan 250061, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20111001</creationdate><title>Experimental study of velocity distributions in the transition region of pipes</title><author>LIU, Yong-hui ; DU, Guang-sheng ; LIU, Li-ping ; SHAO, Zhu-feng ; ZHAI, Cheng-yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c39c13d6267d7581e650aeb0de38c641a76d0f6976cf4f210c75d5a892f6ce803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficients</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flowmeters</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrology/Water Resources</topic><topic>Numerical and Computational Physics</topic><topic>Particle image velocimetry</topic><topic>Particle Image Velocimetry (PIV)</topic><topic>Pipe</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>the profile-linear average velocity</topic><topic>Transition flow</topic><topic>transition region</topic><topic>ultrasonic flowmeter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Yong-hui</creatorcontrib><creatorcontrib>DU, Guang-sheng</creatorcontrib><creatorcontrib>LIU, Li-ping</creatorcontrib><creatorcontrib>SHAO, Zhu-feng</creatorcontrib><creatorcontrib>ZHAI, Cheng-yuan</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of hydrodynamics. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Yong-hui</au><au>DU, Guang-sheng</au><au>LIU, Li-ping</au><au>SHAO, Zhu-feng</au><au>ZHAI, Cheng-yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of velocity distributions in the transition region of pipes</atitle><jtitle>Journal of hydrodynamics. Series B</jtitle><stitle>J Hydrodyn</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>23</volume><issue>5</issue><spage>643</spage><epage>648</epage><pages>643-648</pages><issn>1001-6058</issn><eissn>1878-0342</eissn><abstract>The accuracy of an ultrasonic flowmeter meaurement depends on the profile-linear average velocity. But this velocity in the transition region is not available at the present. In this article, the velocity in the transition region in pipes is studied by experimental methods. The Particle Image Velocimetry (PIV) is used to measure the flow field in the transition region in pipes, and the measured results from PIV are in good agreement with the Westerwell's experimental data. Based on the experimental data of PIV, the curves of the profile-linear average velocity in the transition region against the Reynolds number in the range from 2 000 to 20 000 are obtained, and it is shown that the coefficient k is constant when the Reynolds number is in the range of 2 000–2 400 and 6 000–20 000, and the coefficient k is increasing when the Reynolds number is in the range of 2 400–6 000. The results of this article can be used to improve the measurement accuracy of the ultrasonic flowmeters and as a theoretical basis for the research on the transition flow.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1001-6058(10)60160-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-6058
ispartof Journal of hydrodynamics. Series B, 2011-10, Vol.23 (5), p.643-648
issn 1001-6058
1878-0342
language eng
recordid cdi_wanfang_journals_sdlxyjyjz_e201105014
source SpringerLink; Elsevier ScienceDirect Journals Collection; Alma/SFX Local Collection
subjects Coefficients
Engineering
Engineering Fluid Dynamics
Flowmeters
Fluid dynamics
Fluid flow
Hydrology/Water Resources
Numerical and Computational Physics
Particle image velocimetry
Particle Image Velocimetry (PIV)
Pipe
Reynolds number
Simulation
the profile-linear average velocity
Transition flow
transition region
ultrasonic flowmeter
title Experimental study of velocity distributions in the transition region of pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20velocity%20distributions%20in%20the%20transition%20region%20of%20pipes&rft.jtitle=Journal%20of%20hydrodynamics.%20Series%20B&rft.au=LIU,%20Yong-hui&rft.date=2011-10-01&rft.volume=23&rft.issue=5&rft.spage=643&rft.epage=648&rft.pages=643-648&rft.issn=1001-6058&rft.eissn=1878-0342&rft_id=info:doi/10.1016/S1001-6058(10)60160-6&rft_dat=%3Cwanfang_jour_proqu%3Esdlxyjyjz_e201105014%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777138307&rft_id=info:pmid/&rft_wanfj_id=sdlxyjyjz_e201105014&rft_els_id=S1001605810601606&rfr_iscdi=true