Evaluating Soil Moisture Predictions Based on Ensemble Kalman Filter and SiB2 Model

Soil moisture is an important variable in the fields of hydrology, meteorology, and agriculture, and has been used for numerous applications and forecasts. Accurate soil moisture predictions on both a large scale and local scale for different soil depths are needed. In this study, a soil moisture as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Meteorological Research 2019-04, Vol.33 (2), p.190-205
Hauptverfasser: Fu, Xiaolei, Yu, Zhongbo, Tang, Ying, Ding, Yongjian, Lyu, Haishen, Zhang, Baoqing, Jiang, Xiaolei, Ju, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil moisture is an important variable in the fields of hydrology, meteorology, and agriculture, and has been used for numerous applications and forecasts. Accurate soil moisture predictions on both a large scale and local scale for different soil depths are needed. In this study, a soil moisture assimilation and prediction based on the Ensemble Kalman Filter (EnKF) and Simple Biosphere Model (SiB2) have been performed in Meilin watershed, eastern China, to evaluate the initial state values with different assimilation frequencies and precipitation influences on soil moisture predictions. The assimilated results at the end of the assimilation period with different assimilation frequencies were set to be the initial values for the prediction period. The measured precipitation, randomly generated precipitation, and zero precipitation were used to force the land surface model in the prediction period. Ten cases were considered based on the initial value and precipitation. The results indicate that, for the summer prediction period with the deeper water table depth, the assimilation results with different assimilation frequencies influence soil moisture predictions significantly. The higher assimilation frequency gives better soil moisture predictions for a long lead-time. The soil moisture predictions are affected by precipitation within the prediction period. For a short lead-time, the soil moisture predictions are better for the case with precipitation, but for a long lead-time, they are better without precipitation. For the winter prediction period with a lower water table depth, there are better soil moisture predictions for the whole prediction period. Unlike the summer prediction period, the soil moisture predictions of winter prediction period are not significantly influenced by precipitation. Overall, it is shown that soil moisture assimilations improve its predictions.
ISSN:2095-6037
2198-0934
DOI:10.1007/s13351-019-8138-6