Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning

Assembly line balancing involves assigning a series of task elements to uniform sequential stations with certain restrictions. Decision makers often discover that a task assignment which is optimal with respect to a deterministic or stochastic/fuzzy model yields quite poor performance in reality. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2011-06, Vol.16 (3), p.308-314
1. Verfasser: 徐炜达 肖田元
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 3
container_start_page 308
container_title Tsinghua science and technology
container_volume 16
creator 徐炜达 肖田元
description Assembly line balancing involves assigning a series of task elements to uniform sequential stations with certain restrictions. Decision makers often discover that a task assignment which is optimal with respect to a deterministic or stochastic/fuzzy model yields quite poor performance in reality. In real environments, assembly line balancing robustness is a more appropriate decision selection guide. A robust model based on the α worst case scenario is developed to compensate for the drawbacks of traditional robust criteria. A robust genetic algorithm is used to solve the problem. Comprehensive computational experiments to study the effect of the solution procedure show that the model generates more flexible robust solutions. Careful tuning the value of α allows the decision maker to balance robustness and conservativeness of as- sembly line task element assignments.
doi_str_mv 10.1016/S1007-0214(11)70045-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_qhdxxb_e201103013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38606296</cqvip_id><wanfj_id>qhdxxb_e201103013</wanfj_id><els_id>S1007021411700451</els_id><sourcerecordid>qhdxxb_e201103013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3823-be3a8f9a35755b1fc6bcee3b2519eb6908b1bd3f1d153e7736b1bcd7c2a0b8cb3</originalsourceid><addsrcrecordid>eNqFkcFOGzEQhlcVlQopj1Bpe4Icls6ss_buCUFUoFIQFWnPlu2dTYw2NrE3NLx9HRJ67cljzTfzz_yTZV8QLhCQf5sjgCigxMk54lgATKoCP2THWIu6EBz4UYrfkU_ZSYxPAIxXgh1nD_MhqIEW1uSPXm_ikN_bLbX5vW-pz69ipJXuX_OZdZRfq145Y90iRTEx3uVzQ04F6_OfKeVS6nP2sVN9pNPDO8p-33z_Nb0rZg-3P6ZXs8KwumSFJqbqrlGsElWlsTNcGyKmywob0ryBWqNuWYctVoyEYDz9TStMqUDXRrNRNt73_aNcp9xCPvlNcElRrpftdqsllYAIDJAl9mzPPge_3lAc5MpGQ30amfwmyrrh5YRPYEdWe9IEH2OgTj4Hu1LhVSLIndfyzWu5M1IiyjevJaa6y30dpZVfLAUZjSVnqLWBzCBbb__b4etBeendYp2c_CfN6nTCsuHsL4f2kJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896246403</pqid></control><display><type>article</type><title>Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning</title><source>EZB Electronic Journals Library</source><creator>徐炜达 肖田元</creator><creatorcontrib>徐炜达 肖田元</creatorcontrib><description>Assembly line balancing involves assigning a series of task elements to uniform sequential stations with certain restrictions. Decision makers often discover that a task assignment which is optimal with respect to a deterministic or stochastic/fuzzy model yields quite poor performance in reality. In real environments, assembly line balancing robustness is a more appropriate decision selection guide. A robust model based on the α worst case scenario is developed to compensate for the drawbacks of traditional robust criteria. A robust genetic algorithm is used to solve the problem. Comprehensive computational experiments to study the effect of the solution procedure show that the model generates more flexible robust solutions. Careful tuning the value of α allows the decision maker to balance robustness and conservativeness of as- sembly line task element assignments.</description><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1878-7606</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.1016/S1007-0214(11)70045-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>assembly line balancing ; Assembly lines ; Decision making ; Fuzzy logic ; genetic algorithm ; Mathematical models ; mixed model ; robust ; Robustness ; scenario planning ; Stations ; Tasks ; Tuning ; 任务分配 ; 元素分配 ; 混合模型 ; 组装线 ; 装配生产线 ; 装配线平衡 ; 规划 ; 鲁棒性</subject><ispartof>Tsinghua science and technology, 2011-06, Vol.16 (3), p.308-314</ispartof><rights>2011 Tsinghua University Press</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3823-be3a8f9a35755b1fc6bcee3b2519eb6908b1bd3f1d153e7736b1bcd7c2a0b8cb3</citedby><cites>FETCH-LOGICAL-c3823-be3a8f9a35755b1fc6bcee3b2519eb6908b1bd3f1d153e7736b1bcd7c2a0b8cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85782X/85782X.jpg</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>徐炜达 肖田元</creatorcontrib><title>Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning</title><title>Tsinghua science and technology</title><addtitle>Tsinghua Science and Technology</addtitle><description>Assembly line balancing involves assigning a series of task elements to uniform sequential stations with certain restrictions. Decision makers often discover that a task assignment which is optimal with respect to a deterministic or stochastic/fuzzy model yields quite poor performance in reality. In real environments, assembly line balancing robustness is a more appropriate decision selection guide. A robust model based on the α worst case scenario is developed to compensate for the drawbacks of traditional robust criteria. A robust genetic algorithm is used to solve the problem. Comprehensive computational experiments to study the effect of the solution procedure show that the model generates more flexible robust solutions. Careful tuning the value of α allows the decision maker to balance robustness and conservativeness of as- sembly line task element assignments.</description><subject>assembly line balancing</subject><subject>Assembly lines</subject><subject>Decision making</subject><subject>Fuzzy logic</subject><subject>genetic algorithm</subject><subject>Mathematical models</subject><subject>mixed model</subject><subject>robust</subject><subject>Robustness</subject><subject>scenario planning</subject><subject>Stations</subject><subject>Tasks</subject><subject>Tuning</subject><subject>任务分配</subject><subject>元素分配</subject><subject>混合模型</subject><subject>组装线</subject><subject>装配生产线</subject><subject>装配线平衡</subject><subject>规划</subject><subject>鲁棒性</subject><issn>1007-0214</issn><issn>1878-7606</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkcFOGzEQhlcVlQopj1Bpe4Icls6ss_buCUFUoFIQFWnPlu2dTYw2NrE3NLx9HRJ67cljzTfzz_yTZV8QLhCQf5sjgCigxMk54lgATKoCP2THWIu6EBz4UYrfkU_ZSYxPAIxXgh1nD_MhqIEW1uSPXm_ikN_bLbX5vW-pz69ipJXuX_OZdZRfq145Y90iRTEx3uVzQ04F6_OfKeVS6nP2sVN9pNPDO8p-33z_Nb0rZg-3P6ZXs8KwumSFJqbqrlGsElWlsTNcGyKmywob0ryBWqNuWYctVoyEYDz9TStMqUDXRrNRNt73_aNcp9xCPvlNcElRrpftdqsllYAIDJAl9mzPPge_3lAc5MpGQ30amfwmyrrh5YRPYEdWe9IEH2OgTj4Hu1LhVSLIndfyzWu5M1IiyjevJaa6y30dpZVfLAUZjSVnqLWBzCBbb__b4etBeendYp2c_CfN6nTCsuHsL4f2kJQ</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>徐炜达 肖田元</creator><general>Elsevier Ltd</general><general>National Laboratory for Information Science and Technology, National Computer Integrated Manufacturing Systems Engineering Research Center, Department of Automation, Tsinghua University, Beijing 100084, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>201106</creationdate><title>Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning</title><author>徐炜达 肖田元</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3823-be3a8f9a35755b1fc6bcee3b2519eb6908b1bd3f1d153e7736b1bcd7c2a0b8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>assembly line balancing</topic><topic>Assembly lines</topic><topic>Decision making</topic><topic>Fuzzy logic</topic><topic>genetic algorithm</topic><topic>Mathematical models</topic><topic>mixed model</topic><topic>robust</topic><topic>Robustness</topic><topic>scenario planning</topic><topic>Stations</topic><topic>Tasks</topic><topic>Tuning</topic><topic>任务分配</topic><topic>元素分配</topic><topic>混合模型</topic><topic>组装线</topic><topic>装配生产线</topic><topic>装配线平衡</topic><topic>规划</topic><topic>鲁棒性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>徐炜达 肖田元</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>徐炜达 肖田元</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning</atitle><jtitle>Tsinghua science and technology</jtitle><addtitle>Tsinghua Science and Technology</addtitle><date>2011-06</date><risdate>2011</risdate><volume>16</volume><issue>3</issue><spage>308</spage><epage>314</epage><pages>308-314</pages><issn>1007-0214</issn><eissn>1878-7606</eissn><eissn>1007-0214</eissn><abstract>Assembly line balancing involves assigning a series of task elements to uniform sequential stations with certain restrictions. Decision makers often discover that a task assignment which is optimal with respect to a deterministic or stochastic/fuzzy model yields quite poor performance in reality. In real environments, assembly line balancing robustness is a more appropriate decision selection guide. A robust model based on the α worst case scenario is developed to compensate for the drawbacks of traditional robust criteria. A robust genetic algorithm is used to solve the problem. Comprehensive computational experiments to study the effect of the solution procedure show that the model generates more flexible robust solutions. Careful tuning the value of α allows the decision maker to balance robustness and conservativeness of as- sembly line task element assignments.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1007-0214(11)70045-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-0214
ispartof Tsinghua science and technology, 2011-06, Vol.16 (3), p.308-314
issn 1007-0214
1878-7606
1007-0214
language eng
recordid cdi_wanfang_journals_qhdxxb_e201103013
source EZB Electronic Journals Library
subjects assembly line balancing
Assembly lines
Decision making
Fuzzy logic
genetic algorithm
Mathematical models
mixed model
robust
Robustness
scenario planning
Stations
Tasks
Tuning
任务分配
元素分配
混合模型
组装线
装配生产线
装配线平衡
规划
鲁棒性
title Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategic%20Robust%20Mixed%20Model%20Assembly%20Line%20Balancing%20Based%20on%20Scenario%20Planning&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=%E5%BE%90%E7%82%9C%E8%BE%BE%20%E8%82%96%E7%94%B0%E5%85%83&rft.date=2011-06&rft.volume=16&rft.issue=3&rft.spage=308&rft.epage=314&rft.pages=308-314&rft.issn=1007-0214&rft.eissn=1878-7606&rft_id=info:doi/10.1016/S1007-0214(11)70045-1&rft_dat=%3Cwanfang_jour_proqu%3Eqhdxxb_e201103013%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896246403&rft_id=info:pmid/&rft_cqvip_id=38606296&rft_wanfj_id=qhdxxb_e201103013&rft_els_id=S1007021411700451&rfr_iscdi=true