Fuzzy Clustering with Novel Separable Criterion
Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis. An improved fuzzy clustering algorithm was developed based on the conventional fuzzy c-means (FCM) to obtain better quality clustering results. The update equations for the membership and the cluster c...
Gespeichert in:
Veröffentlicht in: | Tsinghua science and technology 2006, Vol.11 (1), p.50-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | Tsinghua science and technology |
container_volume | 11 |
creator | Yin, Zhonghang Tang, Yuangang Sun, Fuchun Sun, Zengqi |
description | Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis. An improved fuzzy clustering algorithm was developed based on the conventional fuzzy
c-means (FCM) to obtain better quality clustering results. The update equations for the membership and the cluster center are derived from the alternating optimization algorithm. Two fuzzy scattering matrices in the objective function assure the compactness between data points and cluster centers, and also strengthen the separation between cluster centers in terms of a novel separable criterion. The clustering algorithm properties are shown to be an improvement over the FCM method's properties. Numerical simulations show that the clustering algorithm gives more accurate clustering results than the FCM method. |
doi_str_mv | 10.1016/S1007-0214(06)70154-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_qhdxxb_e200601009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>qhdxxb_e200601009</wanfj_id><els_id>S1007021406701547</els_id><sourcerecordid>qhdxxb_e200601009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-54473071c9d10f25870a0d5bcd3b48b4fb8ec38c2cc4bc62b2b5f96089bf19b83</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMInIOVID6HjxFtOCEUUkCo4FM6W7ditq5AUp_vX47Zw5jSjmbfoPYRuMdxjwGw4wQA8hQyTO2ADDpiSlJ-hHhZcpJwBO4_7H-QSXXXdHCBnlOc9NByt9vtdUtarbmmDb6bJxi9nyVu7tnUysQsVlK5tUgZ_eLfNNbpwqu7sze_so8_R00f5ko7fn1_Lx3FqMiqKlBLCc-DYFBUGF08cFFRUmyrXRGjitLAmFyYzhmjDMp1p6goGotAOF1rkfTQ46W5U41QzlfN2FZroKL9n1Xarpc0AGMRYRcTSE9aEtuuCdXIR_JcKO4lBHhqSx4bkIb4EJo8NSR55DyeejUHW3gbZGW8bYysfrFnKqvX_KPwA-65sQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy Clustering with Novel Separable Criterion</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yin, Zhonghang ; Tang, Yuangang ; Sun, Fuchun ; Sun, Zengqi</creator><creatorcontrib>Yin, Zhonghang ; Tang, Yuangang ; Sun, Fuchun ; Sun, Zengqi</creatorcontrib><description>Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis. An improved fuzzy clustering algorithm was developed based on the conventional fuzzy
c-means (FCM) to obtain better quality clustering results. The update equations for the membership and the cluster center are derived from the alternating optimization algorithm. Two fuzzy scattering matrices in the objective function assure the compactness between data points and cluster centers, and also strengthen the separation between cluster centers in terms of a novel separable criterion. The clustering algorithm properties are shown to be an improvement over the FCM method's properties. Numerical simulations show that the clustering algorithm gives more accurate clustering results than the FCM method.</description><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1878-7606</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.1016/S1007-0214(06)70154-7</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>alternating optimization ; fuzzy c-means (FCM) ; fuzzy clustering</subject><ispartof>Tsinghua science and technology, 2006, Vol.11 (1), p.50-53</ispartof><rights>2006 Tsinghua University Press</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2589-54473071c9d10f25870a0d5bcd3b48b4fb8ec38c2cc4bc62b2b5f96089bf19b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/qhdxxb-e/qhdxxb-e.jpg</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>Yin, Zhonghang</creatorcontrib><creatorcontrib>Tang, Yuangang</creatorcontrib><creatorcontrib>Sun, Fuchun</creatorcontrib><creatorcontrib>Sun, Zengqi</creatorcontrib><title>Fuzzy Clustering with Novel Separable Criterion</title><title>Tsinghua science and technology</title><description>Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis. An improved fuzzy clustering algorithm was developed based on the conventional fuzzy
c-means (FCM) to obtain better quality clustering results. The update equations for the membership and the cluster center are derived from the alternating optimization algorithm. Two fuzzy scattering matrices in the objective function assure the compactness between data points and cluster centers, and also strengthen the separation between cluster centers in terms of a novel separable criterion. The clustering algorithm properties are shown to be an improvement over the FCM method's properties. Numerical simulations show that the clustering algorithm gives more accurate clustering results than the FCM method.</description><subject>alternating optimization</subject><subject>fuzzy c-means (FCM)</subject><subject>fuzzy clustering</subject><issn>1007-0214</issn><issn>1878-7606</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMInIOVID6HjxFtOCEUUkCo4FM6W7ditq5AUp_vX47Zw5jSjmbfoPYRuMdxjwGw4wQA8hQyTO2ADDpiSlJ-hHhZcpJwBO4_7H-QSXXXdHCBnlOc9NByt9vtdUtarbmmDb6bJxi9nyVu7tnUysQsVlK5tUgZ_eLfNNbpwqu7sze_so8_R00f5ko7fn1_Lx3FqMiqKlBLCc-DYFBUGF08cFFRUmyrXRGjitLAmFyYzhmjDMp1p6goGotAOF1rkfTQ46W5U41QzlfN2FZroKL9n1Xarpc0AGMRYRcTSE9aEtuuCdXIR_JcKO4lBHhqSx4bkIb4EJo8NSR55DyeejUHW3gbZGW8bYysfrFnKqvX_KPwA-65sQw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Yin, Zhonghang</creator><creator>Tang, Yuangang</creator><creator>Sun, Fuchun</creator><creator>Sun, Zengqi</creator><general>Elsevier Ltd</general><general>Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2006</creationdate><title>Fuzzy Clustering with Novel Separable Criterion</title><author>Yin, Zhonghang ; Tang, Yuangang ; Sun, Fuchun ; Sun, Zengqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-54473071c9d10f25870a0d5bcd3b48b4fb8ec38c2cc4bc62b2b5f96089bf19b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>alternating optimization</topic><topic>fuzzy c-means (FCM)</topic><topic>fuzzy clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Zhonghang</creatorcontrib><creatorcontrib>Tang, Yuangang</creatorcontrib><creatorcontrib>Sun, Fuchun</creatorcontrib><creatorcontrib>Sun, Zengqi</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Zhonghang</au><au>Tang, Yuangang</au><au>Sun, Fuchun</au><au>Sun, Zengqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Clustering with Novel Separable Criterion</atitle><jtitle>Tsinghua science and technology</jtitle><date>2006</date><risdate>2006</risdate><volume>11</volume><issue>1</issue><spage>50</spage><epage>53</epage><pages>50-53</pages><issn>1007-0214</issn><eissn>1878-7606</eissn><eissn>1007-0214</eissn><abstract>Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis. An improved fuzzy clustering algorithm was developed based on the conventional fuzzy
c-means (FCM) to obtain better quality clustering results. The update equations for the membership and the cluster center are derived from the alternating optimization algorithm. Two fuzzy scattering matrices in the objective function assure the compactness between data points and cluster centers, and also strengthen the separation between cluster centers in terms of a novel separable criterion. The clustering algorithm properties are shown to be an improvement over the FCM method's properties. Numerical simulations show that the clustering algorithm gives more accurate clustering results than the FCM method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1007-0214(06)70154-7</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-0214 |
ispartof | Tsinghua science and technology, 2006, Vol.11 (1), p.50-53 |
issn | 1007-0214 1878-7606 1007-0214 |
language | eng |
recordid | cdi_wanfang_journals_qhdxxb_e200601009 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | alternating optimization fuzzy c-means (FCM) fuzzy clustering |
title | Fuzzy Clustering with Novel Separable Criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Clustering%20with%20Novel%20Separable%20Criterion&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=Yin,%20Zhonghang&rft.date=2006&rft.volume=11&rft.issue=1&rft.spage=50&rft.epage=53&rft.pages=50-53&rft.issn=1007-0214&rft.eissn=1878-7606&rft_id=info:doi/10.1016/S1007-0214(06)70154-7&rft_dat=%3Cwanfang_jour_cross%3Eqhdxxb_e200601009%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=qhdxxb_e200601009&rft_els_id=S1007021406701547&rfr_iscdi=true |