System Reliability Analysis of an Offshore Jacket Platform

This study investigates strategies for solving the system reliability of large three-dimensional jacket structures. These structural systems normally fail as a result of a series of different components failures. The failure characteristics are investigated under various environmental conditions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Ocean University of China 2020-02, Vol.19 (1), p.47-59
Hauptverfasser: Zhao, Yuliang, Dong, Sheng, Jiang, Fengyuan, Guedes Soares, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 47
container_title Journal of Ocean University of China
container_volume 19
creator Zhao, Yuliang
Dong, Sheng
Jiang, Fengyuan
Guedes Soares, Carlos
description This study investigates strategies for solving the system reliability of large three-dimensional jacket structures. These structural systems normally fail as a result of a series of different components failures. The failure characteristics are investigated under various environmental conditions and direction combinations. The β -unzipping technique is adopted to determine critical failure components, and the entire system is simplified as a series-parallel system to approximately evaluate the structural system reliability. However, this approach needs excessive computational effort for searching failure components and failure paths. Based on a trained artificial neural network (ANN), which can be used to approximate the implicit limit-state function of a complicated structure, a new alternative procedure is proposed to improve the efficiency of the system reliability analysis method. The failure probability is calculated through Monte Carlo simulation (MCS) with Latin hypercube sampling (LHS). The features and applicability of the above procedure are discussed and compared using an example jacket platform located in Chengdao Oilfield, Bohai Sea, China. This study provides a reference for the evaluation of the system reliability of jacket structures.
doi_str_mv 10.1007/s11802-020-4181-2
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_qdhydxxb_e202001005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>qdhydxxb_e202001005</wanfj_id><sourcerecordid>qdhydxxb_e202001005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7a1f45d4fd2df3b93caffd5887e8ee86ac8aa9ee31b218969c8ea3e9db8bbb8b3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8Bj7K6M5s0G2-l-Emh4sd52SSzbWqatLspNv-9CRE8eRhmDr_3mPcYuwRxA0LEtx5ACeQCBQ9BAccjNoIkkTwSCMfdPYmRR6DwlJ15vxYiktEkHrG799Y3tAneqCxMWpRF0wbTypStL3xQ28BUwcJav6odBS8m-6ImeC1NY2u3OWcn1pSeLn73mH0-3H_Mnvh88fg8m855JiNseGzAhlEe2hxzK9NEZsbaPFIqJkWkJiZTxiREElIElUySTJGRlOSpStNu5JhdD77fprKmWup1vXfdi17v8lWbHw6pJuyCC-hTjdnVQG9dvduTb_5wlKFEhVJiR8FAZa723pHVW1dsjGs1CN0XqodCdeer-0J1r8FB4zu2WpL7c_5f9AOm8Hh1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343282332</pqid></control><display><type>article</type><title>System Reliability Analysis of an Offshore Jacket Platform</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Yuliang ; Dong, Sheng ; Jiang, Fengyuan ; Guedes Soares, Carlos</creator><creatorcontrib>Zhao, Yuliang ; Dong, Sheng ; Jiang, Fengyuan ; Guedes Soares, Carlos</creatorcontrib><description>This study investigates strategies for solving the system reliability of large three-dimensional jacket structures. These structural systems normally fail as a result of a series of different components failures. The failure characteristics are investigated under various environmental conditions and direction combinations. The β -unzipping technique is adopted to determine critical failure components, and the entire system is simplified as a series-parallel system to approximately evaluate the structural system reliability. However, this approach needs excessive computational effort for searching failure components and failure paths. Based on a trained artificial neural network (ANN), which can be used to approximate the implicit limit-state function of a complicated structure, a new alternative procedure is proposed to improve the efficiency of the system reliability analysis method. The failure probability is calculated through Monte Carlo simulation (MCS) with Latin hypercube sampling (LHS). The features and applicability of the above procedure are discussed and compared using an example jacket platform located in Chengdao Oilfield, Bohai Sea, China. This study provides a reference for the evaluation of the system reliability of jacket structures.</description><identifier>ISSN: 1672-5182</identifier><identifier>EISSN: 1993-5021</identifier><identifier>EISSN: 1672-5174</identifier><identifier>DOI: 10.1007/s11802-020-4181-2</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Artificial neural networks ; Component reliability ; Components ; Computer applications ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Environmental conditions ; Failure ; Failure analysis ; Hypercubes ; Latin hypercube sampling ; Limit states ; Meteorology ; Monte Carlo simulation ; Neural networks ; Oceanography ; Offshore ; Offshore drilling rigs ; Oil and gas fields ; Oil field equipment ; Oil fields ; Probability theory ; Reliability ; Reliability analysis ; Reliability engineering ; Statistical methods ; Structural reliability ; System reliability</subject><ispartof>Journal of Ocean University of China, 2020-02, Vol.19 (1), p.47-59</ispartof><rights>Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2020</rights><rights>2020© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7a1f45d4fd2df3b93caffd5887e8ee86ac8aa9ee31b218969c8ea3e9db8bbb8b3</citedby><cites>FETCH-LOGICAL-c352t-7a1f45d4fd2df3b93caffd5887e8ee86ac8aa9ee31b218969c8ea3e9db8bbb8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/qdhydxxb-e/qdhydxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11802-020-4181-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11802-020-4181-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhao, Yuliang</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Jiang, Fengyuan</creatorcontrib><creatorcontrib>Guedes Soares, Carlos</creatorcontrib><title>System Reliability Analysis of an Offshore Jacket Platform</title><title>Journal of Ocean University of China</title><addtitle>J. Ocean Univ. China</addtitle><description>This study investigates strategies for solving the system reliability of large three-dimensional jacket structures. These structural systems normally fail as a result of a series of different components failures. The failure characteristics are investigated under various environmental conditions and direction combinations. The β -unzipping technique is adopted to determine critical failure components, and the entire system is simplified as a series-parallel system to approximately evaluate the structural system reliability. However, this approach needs excessive computational effort for searching failure components and failure paths. Based on a trained artificial neural network (ANN), which can be used to approximate the implicit limit-state function of a complicated structure, a new alternative procedure is proposed to improve the efficiency of the system reliability analysis method. The failure probability is calculated through Monte Carlo simulation (MCS) with Latin hypercube sampling (LHS). The features and applicability of the above procedure are discussed and compared using an example jacket platform located in Chengdao Oilfield, Bohai Sea, China. This study provides a reference for the evaluation of the system reliability of jacket structures.</description><subject>Artificial neural networks</subject><subject>Component reliability</subject><subject>Components</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental conditions</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Limit states</subject><subject>Meteorology</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Oceanography</subject><subject>Offshore</subject><subject>Offshore drilling rigs</subject><subject>Oil and gas fields</subject><subject>Oil field equipment</subject><subject>Oil fields</subject><subject>Probability theory</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Statistical methods</subject><subject>Structural reliability</subject><subject>System reliability</subject><issn>1672-5182</issn><issn>1993-5021</issn><issn>1672-5174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFb_AG8Bj7K6M5s0G2-l-Emh4sd52SSzbWqatLspNv-9CRE8eRhmDr_3mPcYuwRxA0LEtx5ACeQCBQ9BAccjNoIkkTwSCMfdPYmRR6DwlJ15vxYiktEkHrG799Y3tAneqCxMWpRF0wbTypStL3xQ28BUwcJav6odBS8m-6ImeC1NY2u3OWcn1pSeLn73mH0-3H_Mnvh88fg8m855JiNseGzAhlEe2hxzK9NEZsbaPFIqJkWkJiZTxiREElIElUySTJGRlOSpStNu5JhdD77fprKmWup1vXfdi17v8lWbHw6pJuyCC-hTjdnVQG9dvduTb_5wlKFEhVJiR8FAZa723pHVW1dsjGs1CN0XqodCdeer-0J1r8FB4zu2WpL7c_5f9AOm8Hh1</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhao, Yuliang</creator><creator>Dong, Sheng</creator><creator>Jiang, Fengyuan</creator><creator>Guedes Soares, Carlos</creator><general>Science Press</general><general>Springer Nature B.V</general><general>College of Engineering,Ocean University of China,Qingdao 266100,China%Centre for Marine Technology and Ocean Engineering (CENTEC),Instituto Superior Técnico,Lisboa 1049-001,Portugal</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200201</creationdate><title>System Reliability Analysis of an Offshore Jacket Platform</title><author>Zhao, Yuliang ; Dong, Sheng ; Jiang, Fengyuan ; Guedes Soares, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7a1f45d4fd2df3b93caffd5887e8ee86ac8aa9ee31b218969c8ea3e9db8bbb8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Component reliability</topic><topic>Components</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental conditions</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Limit states</topic><topic>Meteorology</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Oceanography</topic><topic>Offshore</topic><topic>Offshore drilling rigs</topic><topic>Oil and gas fields</topic><topic>Oil field equipment</topic><topic>Oil fields</topic><topic>Probability theory</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Statistical methods</topic><topic>Structural reliability</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuliang</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Jiang, Fengyuan</creatorcontrib><creatorcontrib>Guedes Soares, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Ocean University of China</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuliang</au><au>Dong, Sheng</au><au>Jiang, Fengyuan</au><au>Guedes Soares, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System Reliability Analysis of an Offshore Jacket Platform</atitle><jtitle>Journal of Ocean University of China</jtitle><stitle>J. Ocean Univ. China</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>19</volume><issue>1</issue><spage>47</spage><epage>59</epage><pages>47-59</pages><issn>1672-5182</issn><eissn>1993-5021</eissn><eissn>1672-5174</eissn><abstract>This study investigates strategies for solving the system reliability of large three-dimensional jacket structures. These structural systems normally fail as a result of a series of different components failures. The failure characteristics are investigated under various environmental conditions and direction combinations. The β -unzipping technique is adopted to determine critical failure components, and the entire system is simplified as a series-parallel system to approximately evaluate the structural system reliability. However, this approach needs excessive computational effort for searching failure components and failure paths. Based on a trained artificial neural network (ANN), which can be used to approximate the implicit limit-state function of a complicated structure, a new alternative procedure is proposed to improve the efficiency of the system reliability analysis method. The failure probability is calculated through Monte Carlo simulation (MCS) with Latin hypercube sampling (LHS). The features and applicability of the above procedure are discussed and compared using an example jacket platform located in Chengdao Oilfield, Bohai Sea, China. This study provides a reference for the evaluation of the system reliability of jacket structures.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11802-020-4181-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-5182
ispartof Journal of Ocean University of China, 2020-02, Vol.19 (1), p.47-59
issn 1672-5182
1993-5021
1672-5174
language eng
recordid cdi_wanfang_journals_qdhydxxb_e202001005
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Artificial neural networks
Component reliability
Components
Computer applications
Computer simulation
Earth and Environmental Science
Earth Sciences
Environmental conditions
Failure
Failure analysis
Hypercubes
Latin hypercube sampling
Limit states
Meteorology
Monte Carlo simulation
Neural networks
Oceanography
Offshore
Offshore drilling rigs
Oil and gas fields
Oil field equipment
Oil fields
Probability theory
Reliability
Reliability analysis
Reliability engineering
Statistical methods
Structural reliability
System reliability
title System Reliability Analysis of an Offshore Jacket Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20Reliability%20Analysis%20of%20an%20Offshore%20Jacket%20Platform&rft.jtitle=Journal%20of%20Ocean%20University%20of%20China&rft.au=Zhao,%20Yuliang&rft.date=2020-02-01&rft.volume=19&rft.issue=1&rft.spage=47&rft.epage=59&rft.pages=47-59&rft.issn=1672-5182&rft.eissn=1993-5021&rft_id=info:doi/10.1007/s11802-020-4181-2&rft_dat=%3Cwanfang_jour_proqu%3Eqdhydxxb_e202001005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343282332&rft_id=info:pmid/&rft_wanfj_id=qdhydxxb_e202001005&rfr_iscdi=true