Nonlinear Contact Between Pipeline’s Outer Wall and Slip-on Buckle Arrestor’s Inner Wall During Buckling Process
In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two- dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline’s inner walls and between pipeline’s outer wa...
Gespeichert in:
Veröffentlicht in: | Journal of Ocean University of China 2017-02, Vol.16 (1), p.42-48 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Journal of Ocean University of China |
container_volume | 16 |
creator | Ma, Weilin Liu, Jiande Dong, Sheng Zhang, Xin Ma, Xiaozhou |
description | In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two- dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline’s inner walls and between pipeline’s outer wall and slip-on buckle arrestor’s inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell’s energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable. |
doi_str_mv | 10.1007/s11802-017-3066-5 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_qdhydxxb_e201701006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000347918</cqvip_id><wanfj_id>qdhydxxb_e201701006</wanfj_id><sourcerecordid>qdhydxxb_e201701006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-80f1ce73941c523172e4979803ddd7bb5763a9ffaf9be4e3e174874185bdb1f33</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEqXwAOwssUFCAY8dx_ayvfy0UkUrAWJpOc7kNiW1c-1EbXe8Bq_Hk9RpSoVYsPJI_s4581MUL4G-BUrluwSgKCspyJLTui7Fo2IPtOaloAwe57qWrBSg2NPiWUoXlAouarlXTJ-DH3qPNpJN8JN1EznE6QrRk7N-xOXr989fiZzOE0by3Q4Dsb4lX4Z-LIMnh7P7MSA5iBHTFOIdeuz9H_T9HHu_XamlOIvBYUrPiyedHRK-uH_3i28fP3zdHJUnp5-ONwcnpeO1mEpFO3Aoua7ACcZBMqy01Irytm1l0whZc6u7zna6wQo5gqyUrECJpm2g43y_eLP6XlnfWb81F2GOPieaXXt-015fNwZZXhnNK6wz_Xqlxxh2c57HXPbJ4TBYj2FOBpRSutbVHfrqH_TBOafXDCrJdKZgpVwMKUXszBj7SxtvDFCzXM2sVzO5BbNczYisYasmjcvqMP7l_B_RfTvuPPjtLusekiSllFdSg-K3E_um2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856214729</pqid></control><display><type>article</type><title>Nonlinear Contact Between Pipeline’s Outer Wall and Slip-on Buckle Arrestor’s Inner Wall During Buckling Process</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Ma, Weilin ; Liu, Jiande ; Dong, Sheng ; Zhang, Xin ; Ma, Xiaozhou</creator><creatorcontrib>Ma, Weilin ; Liu, Jiande ; Dong, Sheng ; Zhang, Xin ; Ma, Xiaozhou</creatorcontrib><description>In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two- dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline’s inner walls and between pipeline’s outer wall and slip-on buckle arrestor’s inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell’s energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.</description><identifier>ISSN: 1672-5182</identifier><identifier>EISSN: 1993-5021</identifier><identifier>EISSN: 1672-5174</identifier><identifier>DOI: 10.1007/s11802-017-3066-5</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>arrestor ; buckle ; contact ; crossover ; Earth and Environmental Science ; Earth Sciences ; Energy balance ; Marine ; Meteorology ; nonlinear ; Nonlinear systems ; Oceanography ; pipeline ; pressure ; propagation ; Safety ; Simulation ; slip-on ; subsea ; Underwater pipelines</subject><ispartof>Journal of Ocean University of China, 2017-02, Vol.16 (1), p.42-48</ispartof><rights>Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Journal of Ocean University of China is a copyright of Springer, 2017.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-80f1ce73941c523172e4979803ddd7bb5763a9ffaf9be4e3e174874185bdb1f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87473A/87473A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11802-017-3066-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11802-017-3066-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ma, Weilin</creatorcontrib><creatorcontrib>Liu, Jiande</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Ma, Xiaozhou</creatorcontrib><title>Nonlinear Contact Between Pipeline’s Outer Wall and Slip-on Buckle Arrestor’s Inner Wall During Buckling Process</title><title>Journal of Ocean University of China</title><addtitle>J. Ocean Univ. China</addtitle><addtitle>Journal of Ocean University of China</addtitle><description>In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two- dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline’s inner walls and between pipeline’s outer wall and slip-on buckle arrestor’s inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell’s energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.</description><subject>arrestor</subject><subject>buckle</subject><subject>contact</subject><subject>crossover</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy balance</subject><subject>Marine</subject><subject>Meteorology</subject><subject>nonlinear</subject><subject>Nonlinear systems</subject><subject>Oceanography</subject><subject>pipeline</subject><subject>pressure</subject><subject>propagation</subject><subject>Safety</subject><subject>Simulation</subject><subject>slip-on</subject><subject>subsea</subject><subject>Underwater pipelines</subject><issn>1672-5182</issn><issn>1993-5021</issn><issn>1672-5174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhSMEEqXwAOwssUFCAY8dx_ayvfy0UkUrAWJpOc7kNiW1c-1EbXe8Bq_Hk9RpSoVYsPJI_s4581MUL4G-BUrluwSgKCspyJLTui7Fo2IPtOaloAwe57qWrBSg2NPiWUoXlAouarlXTJ-DH3qPNpJN8JN1EznE6QrRk7N-xOXr989fiZzOE0by3Q4Dsb4lX4Z-LIMnh7P7MSA5iBHTFOIdeuz9H_T9HHu_XamlOIvBYUrPiyedHRK-uH_3i28fP3zdHJUnp5-ONwcnpeO1mEpFO3Aoua7ACcZBMqy01Irytm1l0whZc6u7zna6wQo5gqyUrECJpm2g43y_eLP6XlnfWb81F2GOPieaXXt-015fNwZZXhnNK6wz_Xqlxxh2c57HXPbJ4TBYj2FOBpRSutbVHfrqH_TBOafXDCrJdKZgpVwMKUXszBj7SxtvDFCzXM2sVzO5BbNczYisYasmjcvqMP7l_B_RfTvuPPjtLusekiSllFdSg-K3E_um2g</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Ma, Weilin</creator><creator>Liu, Jiande</creator><creator>Dong, Sheng</creator><creator>Zhang, Xin</creator><creator>Ma, Xiaozhou</creator><general>Science Press</general><general>Springer Nature B.V</general><general>College of Engineering,Ocean University of China,Qingdao 266100,P.R.China%State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,P.R.China%State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,P.R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170201</creationdate><title>Nonlinear Contact Between Pipeline’s Outer Wall and Slip-on Buckle Arrestor’s Inner Wall During Buckling Process</title><author>Ma, Weilin ; Liu, Jiande ; Dong, Sheng ; Zhang, Xin ; Ma, Xiaozhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-80f1ce73941c523172e4979803ddd7bb5763a9ffaf9be4e3e174874185bdb1f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>arrestor</topic><topic>buckle</topic><topic>contact</topic><topic>crossover</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy balance</topic><topic>Marine</topic><topic>Meteorology</topic><topic>nonlinear</topic><topic>Nonlinear systems</topic><topic>Oceanography</topic><topic>pipeline</topic><topic>pressure</topic><topic>propagation</topic><topic>Safety</topic><topic>Simulation</topic><topic>slip-on</topic><topic>subsea</topic><topic>Underwater pipelines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Weilin</creatorcontrib><creatorcontrib>Liu, Jiande</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Ma, Xiaozhou</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Ocean University of China</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Weilin</au><au>Liu, Jiande</au><au>Dong, Sheng</au><au>Zhang, Xin</au><au>Ma, Xiaozhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Contact Between Pipeline’s Outer Wall and Slip-on Buckle Arrestor’s Inner Wall During Buckling Process</atitle><jtitle>Journal of Ocean University of China</jtitle><stitle>J. Ocean Univ. China</stitle><addtitle>Journal of Ocean University of China</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>42</spage><epage>48</epage><pages>42-48</pages><issn>1672-5182</issn><eissn>1993-5021</eissn><eissn>1672-5174</eissn><abstract>In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two- dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline’s inner walls and between pipeline’s outer wall and slip-on buckle arrestor’s inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell’s energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11802-017-3066-5</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-5182 |
ispartof | Journal of Ocean University of China, 2017-02, Vol.16 (1), p.42-48 |
issn | 1672-5182 1993-5021 1672-5174 |
language | eng |
recordid | cdi_wanfang_journals_qdhydxxb_e201701006 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | arrestor buckle contact crossover Earth and Environmental Science Earth Sciences Energy balance Marine Meteorology nonlinear Nonlinear systems Oceanography pipeline pressure propagation Safety Simulation slip-on subsea Underwater pipelines |
title | Nonlinear Contact Between Pipeline’s Outer Wall and Slip-on Buckle Arrestor’s Inner Wall During Buckling Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Contact%20Between%20Pipeline%E2%80%99s%20Outer%20Wall%20and%20Slip-on%20Buckle%20Arrestor%E2%80%99s%20Inner%20Wall%20During%20Buckling%20Process&rft.jtitle=Journal%20of%20Ocean%20University%20of%20China&rft.au=Ma,%20Weilin&rft.date=2017-02-01&rft.volume=16&rft.issue=1&rft.spage=42&rft.epage=48&rft.pages=42-48&rft.issn=1672-5182&rft.eissn=1993-5021&rft_id=info:doi/10.1007/s11802-017-3066-5&rft_dat=%3Cwanfang_jour_proqu%3Eqdhydxxb_e201701006%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856214729&rft_id=info:pmid/&rft_cqvip_id=7000347918&rft_wanfj_id=qdhydxxb_e201701006&rfr_iscdi=true |