Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption
The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculat...
Gespeichert in:
Veröffentlicht in: | Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-03, Vol.6 (2), p.354-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | 354 |
container_title | Energy & environmental materials (Hoboken, N.J.) |
container_volume | 6 |
creator | Zhang, Zeyun Xu, Xuefei |
description | The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces.
A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed. |
doi_str_mv | 10.1002/eem2.12348 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_24P</sourceid><recordid>TN_cdi_wanfang_journals_nyyhjcl_e202302035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>nyyhjcl_e202302035</wanfj_id><sourcerecordid>nyyhjcl_e202302035</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2968-b74355e5c82519fa0ea74298a8d87077d727bd6fec1a8ffdcc69861e56a6878f3</originalsourceid><addsrcrecordid>eNpNkd1KAzEQhRdRULQ3PkHAO6Gan2aT9U5qtYKt4g9ehpidbVO2yZrNInvnI_gIPptP4q4VFAbmDPNxBuYkySHBJwRjegqwpieEspHcSvYoF3yIGU-3_-ndZFDXK9zBmLARyfaSzxmYpXa2jtaga1fbxTLWyLro0aQEE4M3Ouqy7ddz240LcOge8sZE63ulN6KruAR0l3-9fzyjKUQI3jWmBB3QhdXRr9FDU1U-RMh7eEznaOadL3UL4Qzd-xKQL9AU3QXoLM7z2oeqdz5Idgpd1jD47fvJ0-XkcTwd3txeXY_Pb4YVzVI5fBEjxjlwIyknWaExaDGimdQylwILkQsqXvK0AEO0LIrcmDSTKQGe6lQKWbD95Hjj-6Zdod1CrXwTXHdRubZdrkypgGLKus8x3sFHG7gK_rWBOv7RVMhUSJoR1lHk19KW0Koq2LUOrSJY9XGpPi71E5eaTGb0R7FvEuGNeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786782913</pqid></control><display><type>article</type><title>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</title><source>Wiley Online Library Open Access</source><creator>Zhang, Zeyun ; Xu, Xuefei</creator><creatorcontrib>Zhang, Zeyun ; Xu, Xuefei</creatorcontrib><description>The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces.
A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.</description><identifier>ISSN: 2575-0356</identifier><identifier>ISSN: 2575-0348</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12348</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Ammonia ; Catalysts ; Chemical reduction ; Computer applications ; Density functional theory ; electrochemistry ; Free energy ; Haber Bosch process ; heteronuclear diatom catalyst ; Hydrogen ; Hydrogen evolution reactions ; Monolayers ; nitrogen reduction reaction ; Palladium ; Performance evaluation ; Selectivity</subject><ispartof>Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.354-n/a</ispartof><rights>2022 Zhengzhou University</rights><rights>2023 Zhengzhou University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2009-0483 ; 0000-0001-5912-2035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/nyyhjcl-e/nyyhjcl-e.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11545,27907,27908,45557,45558,46035,46392,46459,46816</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12348$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Zeyun</creatorcontrib><creatorcontrib>Xu, Xuefei</creatorcontrib><title>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</title><title>Energy & environmental materials (Hoboken, N.J.)</title><description>The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces.
A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Computer applications</subject><subject>Density functional theory</subject><subject>electrochemistry</subject><subject>Free energy</subject><subject>Haber Bosch process</subject><subject>heteronuclear diatom catalyst</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Monolayers</subject><subject>nitrogen reduction reaction</subject><subject>Palladium</subject><subject>Performance evaluation</subject><subject>Selectivity</subject><issn>2575-0356</issn><issn>2575-0348</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkd1KAzEQhRdRULQ3PkHAO6Gan2aT9U5qtYKt4g9ehpidbVO2yZrNInvnI_gIPptP4q4VFAbmDPNxBuYkySHBJwRjegqwpieEspHcSvYoF3yIGU-3_-ndZFDXK9zBmLARyfaSzxmYpXa2jtaga1fbxTLWyLro0aQEE4M3Ouqy7ddz240LcOge8sZE63ulN6KruAR0l3-9fzyjKUQI3jWmBB3QhdXRr9FDU1U-RMh7eEznaOadL3UL4Qzd-xKQL9AU3QXoLM7z2oeqdz5Idgpd1jD47fvJ0-XkcTwd3txeXY_Pb4YVzVI5fBEjxjlwIyknWaExaDGimdQylwILkQsqXvK0AEO0LIrcmDSTKQGe6lQKWbD95Hjj-6Zdod1CrXwTXHdRubZdrkypgGLKus8x3sFHG7gK_rWBOv7RVMhUSJoR1lHk19KW0Koq2LUOrSJY9XGpPi71E5eaTGb0R7FvEuGNeg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Zhang, Zeyun</creator><creator>Xu, Xuefei</creator><general>Wiley Subscription Services, Inc</general><general>Department of Energy and Power Engineering,and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Center for Combustion Energy,Tsinghua University,Beijing 100084,China</general><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-2009-0483</orcidid><orcidid>https://orcid.org/0000-0001-5912-2035</orcidid></search><sort><creationdate>202303</creationdate><title>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</title><author>Zhang, Zeyun ; Xu, Xuefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2968-b74355e5c82519fa0ea74298a8d87077d727bd6fec1a8ffdcc69861e56a6878f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Computer applications</topic><topic>Density functional theory</topic><topic>electrochemistry</topic><topic>Free energy</topic><topic>Haber Bosch process</topic><topic>heteronuclear diatom catalyst</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Monolayers</topic><topic>nitrogen reduction reaction</topic><topic>Palladium</topic><topic>Performance evaluation</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zeyun</creatorcontrib><creatorcontrib>Xu, Xuefei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zeyun</au><au>Xu, Xuefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</atitle><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>354</spage><epage>n/a</epage><pages>354-n/a</pages><issn>2575-0356</issn><issn>2575-0348</issn><eissn>2575-0356</eissn><abstract>The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces.
A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12348</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2009-0483</orcidid><orcidid>https://orcid.org/0000-0001-5912-2035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2575-0356 |
ispartof | Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.354-n/a |
issn | 2575-0356 2575-0348 2575-0356 |
language | eng |
recordid | cdi_wanfang_journals_nyyhjcl_e202302035 |
source | Wiley Online Library Open Access |
subjects | Adsorption Ammonia Catalysts Chemical reduction Computer applications Density functional theory electrochemistry Free energy Haber Bosch process heteronuclear diatom catalyst Hydrogen Hydrogen evolution reactions Monolayers nitrogen reduction reaction Palladium Performance evaluation Selectivity |
title | Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Insights%20into%20Electrocatalytic%20Nitrogen%20Reduction%20Reaction%20on%20the%20Pd%E2%80%90W%20Heteronuclear%20Diatom%20Supported%20on%20C2N%20Monolayer:%20Role%20of%20H%20Pre%E2%80%90Adsorption&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Zhang,%20Zeyun&rft.date=2023-03&rft.volume=6&rft.issue=2&rft.spage=354&rft.epage=n/a&rft.pages=354-n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12348&rft_dat=%3Cwanfang_jour_24P%3Enyyhjcl_e202302035%3C/wanfang_jour_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786782913&rft_id=info:pmid/&rft_wanfj_id=nyyhjcl_e202302035&rfr_iscdi=true |