Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption

The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-03, Vol.6 (2), p.354-n/a
Hauptverfasser: Zhang, Zeyun, Xu, Xuefei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page 354
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 6
creator Zhang, Zeyun
Xu, Xuefei
description The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces. A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.
doi_str_mv 10.1002/eem2.12348
format Article
fullrecord <record><control><sourceid>wanfang_jour_24P</sourceid><recordid>TN_cdi_wanfang_journals_nyyhjcl_e202302035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>nyyhjcl_e202302035</wanfj_id><sourcerecordid>nyyhjcl_e202302035</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2968-b74355e5c82519fa0ea74298a8d87077d727bd6fec1a8ffdcc69861e56a6878f3</originalsourceid><addsrcrecordid>eNpNkd1KAzEQhRdRULQ3PkHAO6Gan2aT9U5qtYKt4g9ehpidbVO2yZrNInvnI_gIPptP4q4VFAbmDPNxBuYkySHBJwRjegqwpieEspHcSvYoF3yIGU-3_-ndZFDXK9zBmLARyfaSzxmYpXa2jtaga1fbxTLWyLro0aQEE4M3Ouqy7ddz240LcOge8sZE63ulN6KruAR0l3-9fzyjKUQI3jWmBB3QhdXRr9FDU1U-RMh7eEznaOadL3UL4Qzd-xKQL9AU3QXoLM7z2oeqdz5Idgpd1jD47fvJ0-XkcTwd3txeXY_Pb4YVzVI5fBEjxjlwIyknWaExaDGimdQylwILkQsqXvK0AEO0LIrcmDSTKQGe6lQKWbD95Hjj-6Zdod1CrXwTXHdRubZdrkypgGLKus8x3sFHG7gK_rWBOv7RVMhUSJoR1lHk19KW0Koq2LUOrSJY9XGpPi71E5eaTGb0R7FvEuGNeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786782913</pqid></control><display><type>article</type><title>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</title><source>Wiley Online Library Open Access</source><creator>Zhang, Zeyun ; Xu, Xuefei</creator><creatorcontrib>Zhang, Zeyun ; Xu, Xuefei</creatorcontrib><description>The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces. A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.</description><identifier>ISSN: 2575-0356</identifier><identifier>ISSN: 2575-0348</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12348</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Ammonia ; Catalysts ; Chemical reduction ; Computer applications ; Density functional theory ; electrochemistry ; Free energy ; Haber Bosch process ; heteronuclear diatom catalyst ; Hydrogen ; Hydrogen evolution reactions ; Monolayers ; nitrogen reduction reaction ; Palladium ; Performance evaluation ; Selectivity</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.354-n/a</ispartof><rights>2022 Zhengzhou University</rights><rights>2023 Zhengzhou University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2009-0483 ; 0000-0001-5912-2035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/nyyhjcl-e/nyyhjcl-e.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11545,27907,27908,45557,45558,46035,46392,46459,46816</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12348$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Zeyun</creatorcontrib><creatorcontrib>Xu, Xuefei</creatorcontrib><title>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces. A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Computer applications</subject><subject>Density functional theory</subject><subject>electrochemistry</subject><subject>Free energy</subject><subject>Haber Bosch process</subject><subject>heteronuclear diatom catalyst</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Monolayers</subject><subject>nitrogen reduction reaction</subject><subject>Palladium</subject><subject>Performance evaluation</subject><subject>Selectivity</subject><issn>2575-0356</issn><issn>2575-0348</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkd1KAzEQhRdRULQ3PkHAO6Gan2aT9U5qtYKt4g9ehpidbVO2yZrNInvnI_gIPptP4q4VFAbmDPNxBuYkySHBJwRjegqwpieEspHcSvYoF3yIGU-3_-ndZFDXK9zBmLARyfaSzxmYpXa2jtaga1fbxTLWyLro0aQEE4M3Ouqy7ddz240LcOge8sZE63ulN6KruAR0l3-9fzyjKUQI3jWmBB3QhdXRr9FDU1U-RMh7eEznaOadL3UL4Qzd-xKQL9AU3QXoLM7z2oeqdz5Idgpd1jD47fvJ0-XkcTwd3txeXY_Pb4YVzVI5fBEjxjlwIyknWaExaDGimdQylwILkQsqXvK0AEO0LIrcmDSTKQGe6lQKWbD95Hjj-6Zdod1CrXwTXHdRubZdrkypgGLKus8x3sFHG7gK_rWBOv7RVMhUSJoR1lHk19KW0Koq2LUOrSJY9XGpPi71E5eaTGb0R7FvEuGNeg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Zhang, Zeyun</creator><creator>Xu, Xuefei</creator><general>Wiley Subscription Services, Inc</general><general>Department of Energy and Power Engineering,and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Center for Combustion Energy,Tsinghua University,Beijing 100084,China</general><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-2009-0483</orcidid><orcidid>https://orcid.org/0000-0001-5912-2035</orcidid></search><sort><creationdate>202303</creationdate><title>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</title><author>Zhang, Zeyun ; Xu, Xuefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2968-b74355e5c82519fa0ea74298a8d87077d727bd6fec1a8ffdcc69861e56a6878f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Computer applications</topic><topic>Density functional theory</topic><topic>electrochemistry</topic><topic>Free energy</topic><topic>Haber Bosch process</topic><topic>heteronuclear diatom catalyst</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Monolayers</topic><topic>nitrogen reduction reaction</topic><topic>Palladium</topic><topic>Performance evaluation</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zeyun</creatorcontrib><creatorcontrib>Xu, Xuefei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zeyun</au><au>Xu, Xuefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>354</spage><epage>n/a</epage><pages>354-n/a</pages><issn>2575-0356</issn><issn>2575-0348</issn><eissn>2575-0356</eissn><abstract>The electrocatalytic N2 reduction reaction (eNRR) is a potential alternative to the Haber–Bosch process for ammonia (NH3) production. Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR. In this work, by means of density functional theory calculations and the computational hydrogen electrode model, we evaluated the eNRR performance of 30 single metal atoms supported on a C2N monolayer (M@C2N), and we designed a new thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N). We found that PdW@C2N prefers to adsorb H over N2, and then, the pre‐generated hydrogen‐terminated PdW@C2N selectively adsorbing N2 behaves as the actual functioning “catalyst” to catalyze the eNRR process, exhibiting excellent performance with a low overpotential (0.31 V), an ultra‐low NH3 desorption free energy (0.05 eV), and a high selectivity toward eNRR over hydrogen evolution reaction (HER). Moreover, PdW@C2N shows a superior eNRR performance to its monomer (W@C2N) and homonuclear diatom (W2@C2N) counterparts. The revealed mechanism indicates that the preferential H adsorption over N2 on the active site may not always hamper the eNRR process, especially for heteronuclear diatom catalysts. This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces. A thermodynamically stable Pd‐W hetero‐metal diatomic catalyst supported on the C2N monolayer (PdW@C2N) was designed for high‐efficient electrocatalytic nitrogen reduction reaction. The key role of pre‐generated hydrogen‐terminated PdW@C2N in catalytic mechanism was revealed.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12348</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2009-0483</orcidid><orcidid>https://orcid.org/0000-0001-5912-2035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.354-n/a
issn 2575-0356
2575-0348
2575-0356
language eng
recordid cdi_wanfang_journals_nyyhjcl_e202302035
source Wiley Online Library Open Access
subjects Adsorption
Ammonia
Catalysts
Chemical reduction
Computer applications
Density functional theory
electrochemistry
Free energy
Haber Bosch process
heteronuclear diatom catalyst
Hydrogen
Hydrogen evolution reactions
Monolayers
nitrogen reduction reaction
Palladium
Performance evaluation
Selectivity
title Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd‐W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre‐Adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Insights%20into%20Electrocatalytic%20Nitrogen%20Reduction%20Reaction%20on%20the%20Pd%E2%80%90W%20Heteronuclear%20Diatom%20Supported%20on%20C2N%20Monolayer:%20Role%20of%20H%20Pre%E2%80%90Adsorption&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Zhang,%20Zeyun&rft.date=2023-03&rft.volume=6&rft.issue=2&rft.spage=354&rft.epage=n/a&rft.pages=354-n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12348&rft_dat=%3Cwanfang_jour_24P%3Enyyhjcl_e202302035%3C/wanfang_jour_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786782913&rft_id=info:pmid/&rft_wanfj_id=nyyhjcl_e202302035&rfr_iscdi=true