Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23

Electron transport layer (ETL) is pivotal to charge carrier transport for PSCs to reach the Shockley–Queisser limit. This study provides a fundamental understanding of heterojunction electron transport layers (ETLs) at the atomic level for stable and efficient perovskite solar cells (PSCs). The bila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-03, Vol.6 (2), p.342-n/a
Hauptverfasser: Ko, Yohan, Kim, Taemin, Lee, Chanyong, Lee, Changhyun, Yun, Yong Ju, Jun, Yongseok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page 342
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 6
creator Ko, Yohan
Kim, Taemin
Lee, Chanyong
Lee, Changhyun
Yun, Yong Ju
Jun, Yongseok
description Electron transport layer (ETL) is pivotal to charge carrier transport for PSCs to reach the Shockley–Queisser limit. This study provides a fundamental understanding of heterojunction electron transport layers (ETLs) at the atomic level for stable and efficient perovskite solar cells (PSCs). The bilayer structure of an ETL composed of SnO2 on TiO2 was examined, revealing a critical factor limiting its potential to obtain efficient performance. Alteration of oxygen vacancies in the TiO2 underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO2 and SnO2 layers. In‐depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO2 and SnO2 layers. The apparent correlation in hysteresis phenomena, including current density–voltage (J–V) curves, appears as a function of the type of band alignment. Density functional theory calculations reveal the intimate relationship between oxygen vacancies, deep trap states, and charge transport efficiency at the interface between the TiO2 and SnO2 layers. The formation of cascade band alignment via control over the TiO2 underlayer enhances device performance and suppresses hysteresis. Optimal performance exhibits a power conversion efficiency (PCE) of 23.45% with an open‐circuit voltage (Voc) of 1.184 V, showing better device stability under maximum power point tracking compared with a staggered bilayer under one‐sun continuous illumination. This study demonstrates a simple and effective atomic reconstruction for an efficient TiO2/SnO2 heterojunction bilayer for the electron transport layer used in a perovskite solar cell. The fundamental understanding of this work may leverage the potential of heterojunction ETLs and further investigation in materials science, particularly for the development of an efficient charge transport layer in metal halide perovskite photovoltaics.
doi_str_mv 10.1002/eem2.12347
format Article
fullrecord <record><control><sourceid>wanfang_jour_24P</sourceid><recordid>TN_cdi_wanfang_journals_nyyhjcl_e202302034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>nyyhjcl_e202302034</wanfj_id><sourcerecordid>nyyhjcl_e202302034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-de8639e2985ac0e212ae820bd3521ea1f40762cd9a88aaec63ccc1db29660b083</originalsourceid><addsrcrecordid>eNp9kctqWzEQhg8hgYY0mz6BILuAU2nkc1sGc3IBF5cm7VaM5ZEjR5Yc6djteZc-bOU4kKy60qD59P2gvyi-CH4lOIevRGu4EiDH9VFxCmVdjrgsq-MP86fiPKUVzzAXciza0-LvtXO0s9hbv2T3vqdoUFt07AfpsJ5bnzfBs2DYHeVlWG29fr3pHOk-5uExok-bEHs2xYEiyzI2-zMsybNfqNHrgXV-aT1R3GeYEFlnjNWWfM--Z-UuPdue2ENwGNmEnEtstssikJ-LE4Mu0fnbeVb8vOkeJ3ej6ez2fnI9HWlZQz1aUFPJlqBtStScQABSA3y-kCUIQmHGvK5AL1psGkTSldRai8Uc2qric97Is-Ly4P2N3qBfqlXYRp8TlR-Gp5V2ioCDzL8mxxm-OMCbGF62lPp3GuqmqhtoRf2u1DGkFMmoTbRrjIMSXO3bUvu21GtbGRZv-dbR8B9Sdd03OLz5B0qOmLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786782917</pqid></control><display><type>article</type><title>Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23</title><source>Wiley Online Library (Open Access Collection)</source><creator>Ko, Yohan ; Kim, Taemin ; Lee, Chanyong ; Lee, Changhyun ; Yun, Yong Ju ; Jun, Yongseok</creator><creatorcontrib>Ko, Yohan ; Kim, Taemin ; Lee, Chanyong ; Lee, Changhyun ; Yun, Yong Ju ; Jun, Yongseok</creatorcontrib><description>Electron transport layer (ETL) is pivotal to charge carrier transport for PSCs to reach the Shockley–Queisser limit. This study provides a fundamental understanding of heterojunction electron transport layers (ETLs) at the atomic level for stable and efficient perovskite solar cells (PSCs). The bilayer structure of an ETL composed of SnO2 on TiO2 was examined, revealing a critical factor limiting its potential to obtain efficient performance. Alteration of oxygen vacancies in the TiO2 underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO2 and SnO2 layers. In‐depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO2 and SnO2 layers. The apparent correlation in hysteresis phenomena, including current density–voltage (J–V) curves, appears as a function of the type of band alignment. Density functional theory calculations reveal the intimate relationship between oxygen vacancies, deep trap states, and charge transport efficiency at the interface between the TiO2 and SnO2 layers. The formation of cascade band alignment via control over the TiO2 underlayer enhances device performance and suppresses hysteresis. Optimal performance exhibits a power conversion efficiency (PCE) of 23.45% with an open‐circuit voltage (Voc) of 1.184 V, showing better device stability under maximum power point tracking compared with a staggered bilayer under one‐sun continuous illumination. This study demonstrates a simple and effective atomic reconstruction for an efficient TiO2/SnO2 heterojunction bilayer for the electron transport layer used in a perovskite solar cell. The fundamental understanding of this work may leverage the potential of heterojunction ETLs and further investigation in materials science, particularly for the development of an efficient charge transport layer in metal halide perovskite photovoltaics.</description><identifier>ISSN: 2575-0356</identifier><identifier>ISSN: 2575-0348</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12347</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Alignment ; Carrier transport ; Charge efficiency ; Charge transport ; Circuits ; Current carriers ; Density functional theory ; Electric potential ; Electron transport ; electron transport bilayer ; Energy conversion efficiency ; heterojunction bilayers ; Heterojunctions ; Hysteresis ; interfacial defect ; Maximum power tracking ; Oxygen ; oxygen vacancy engineering ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Recombination ; Solar cells ; Tin dioxide ; Titanium dioxide ; Voltage</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.342-n/a</ispartof><rights>2022 Zhengzhou University.</rights><rights>2023 Zhengzhou University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-de8639e2985ac0e212ae820bd3521ea1f40762cd9a88aaec63ccc1db29660b083</citedby><cites>FETCH-LOGICAL-c3727-de8639e2985ac0e212ae820bd3521ea1f40762cd9a88aaec63ccc1db29660b083</cites><orcidid>0000-0002-1005-100X ; 0000-0002-5315-1908 ; 0000-0001-5212-2681 ; 0000-0003-4345-1322 ; 0000-0003-2704-8162 ; 0000-0003-1463-6723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/nyyhjcl-e/nyyhjcl-e.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11567,27929,27930,45579,45580,46057,46414,46481,46838</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12347$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Ko, Yohan</creatorcontrib><creatorcontrib>Kim, Taemin</creatorcontrib><creatorcontrib>Lee, Chanyong</creatorcontrib><creatorcontrib>Lee, Changhyun</creatorcontrib><creatorcontrib>Yun, Yong Ju</creatorcontrib><creatorcontrib>Jun, Yongseok</creatorcontrib><title>Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>Electron transport layer (ETL) is pivotal to charge carrier transport for PSCs to reach the Shockley–Queisser limit. This study provides a fundamental understanding of heterojunction electron transport layers (ETLs) at the atomic level for stable and efficient perovskite solar cells (PSCs). The bilayer structure of an ETL composed of SnO2 on TiO2 was examined, revealing a critical factor limiting its potential to obtain efficient performance. Alteration of oxygen vacancies in the TiO2 underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO2 and SnO2 layers. In‐depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO2 and SnO2 layers. The apparent correlation in hysteresis phenomena, including current density–voltage (J–V) curves, appears as a function of the type of band alignment. Density functional theory calculations reveal the intimate relationship between oxygen vacancies, deep trap states, and charge transport efficiency at the interface between the TiO2 and SnO2 layers. The formation of cascade band alignment via control over the TiO2 underlayer enhances device performance and suppresses hysteresis. Optimal performance exhibits a power conversion efficiency (PCE) of 23.45% with an open‐circuit voltage (Voc) of 1.184 V, showing better device stability under maximum power point tracking compared with a staggered bilayer under one‐sun continuous illumination. This study demonstrates a simple and effective atomic reconstruction for an efficient TiO2/SnO2 heterojunction bilayer for the electron transport layer used in a perovskite solar cell. The fundamental understanding of this work may leverage the potential of heterojunction ETLs and further investigation in materials science, particularly for the development of an efficient charge transport layer in metal halide perovskite photovoltaics.</description><subject>Alignment</subject><subject>Carrier transport</subject><subject>Charge efficiency</subject><subject>Charge transport</subject><subject>Circuits</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Electric potential</subject><subject>Electron transport</subject><subject>electron transport bilayer</subject><subject>Energy conversion efficiency</subject><subject>heterojunction bilayers</subject><subject>Heterojunctions</subject><subject>Hysteresis</subject><subject>interfacial defect</subject><subject>Maximum power tracking</subject><subject>Oxygen</subject><subject>oxygen vacancy engineering</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><subject>Voltage</subject><issn>2575-0356</issn><issn>2575-0348</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctqWzEQhg8hgYY0mz6BILuAU2nkc1sGc3IBF5cm7VaM5ZEjR5Yc6djteZc-bOU4kKy60qD59P2gvyi-CH4lOIevRGu4EiDH9VFxCmVdjrgsq-MP86fiPKUVzzAXciza0-LvtXO0s9hbv2T3vqdoUFt07AfpsJ5bnzfBs2DYHeVlWG29fr3pHOk-5uExok-bEHs2xYEiyzI2-zMsybNfqNHrgXV-aT1R3GeYEFlnjNWWfM--Z-UuPdue2ENwGNmEnEtstssikJ-LE4Mu0fnbeVb8vOkeJ3ej6ez2fnI9HWlZQz1aUFPJlqBtStScQABSA3y-kCUIQmHGvK5AL1psGkTSldRai8Uc2qric97Is-Ly4P2N3qBfqlXYRp8TlR-Gp5V2ioCDzL8mxxm-OMCbGF62lPp3GuqmqhtoRf2u1DGkFMmoTbRrjIMSXO3bUvu21GtbGRZv-dbR8B9Sdd03OLz5B0qOmLI</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Ko, Yohan</creator><creator>Kim, Taemin</creator><creator>Lee, Chanyong</creator><creator>Lee, Changhyun</creator><creator>Yun, Yong Ju</creator><creator>Jun, Yongseok</creator><general>Wiley Subscription Services, Inc</general><general>Graduate School of Energy and Environment(KU-KIST Green School),Korea University,Seoul 02841,Korea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-1005-100X</orcidid><orcidid>https://orcid.org/0000-0002-5315-1908</orcidid><orcidid>https://orcid.org/0000-0001-5212-2681</orcidid><orcidid>https://orcid.org/0000-0003-4345-1322</orcidid><orcidid>https://orcid.org/0000-0003-2704-8162</orcidid><orcidid>https://orcid.org/0000-0003-1463-6723</orcidid></search><sort><creationdate>202303</creationdate><title>Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23</title><author>Ko, Yohan ; Kim, Taemin ; Lee, Chanyong ; Lee, Changhyun ; Yun, Yong Ju ; Jun, Yongseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-de8639e2985ac0e212ae820bd3521ea1f40762cd9a88aaec63ccc1db29660b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>Carrier transport</topic><topic>Charge efficiency</topic><topic>Charge transport</topic><topic>Circuits</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Electric potential</topic><topic>Electron transport</topic><topic>electron transport bilayer</topic><topic>Energy conversion efficiency</topic><topic>heterojunction bilayers</topic><topic>Heterojunctions</topic><topic>Hysteresis</topic><topic>interfacial defect</topic><topic>Maximum power tracking</topic><topic>Oxygen</topic><topic>oxygen vacancy engineering</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Yohan</creatorcontrib><creatorcontrib>Kim, Taemin</creatorcontrib><creatorcontrib>Lee, Chanyong</creatorcontrib><creatorcontrib>Lee, Changhyun</creatorcontrib><creatorcontrib>Yun, Yong Ju</creatorcontrib><creatorcontrib>Jun, Yongseok</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ko, Yohan</au><au>Kim, Taemin</au><au>Lee, Chanyong</au><au>Lee, Changhyun</au><au>Yun, Yong Ju</au><au>Jun, Yongseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>342</spage><epage>n/a</epage><pages>342-n/a</pages><issn>2575-0356</issn><issn>2575-0348</issn><eissn>2575-0356</eissn><abstract>Electron transport layer (ETL) is pivotal to charge carrier transport for PSCs to reach the Shockley–Queisser limit. This study provides a fundamental understanding of heterojunction electron transport layers (ETLs) at the atomic level for stable and efficient perovskite solar cells (PSCs). The bilayer structure of an ETL composed of SnO2 on TiO2 was examined, revealing a critical factor limiting its potential to obtain efficient performance. Alteration of oxygen vacancies in the TiO2 underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO2 and SnO2 layers. In‐depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO2 and SnO2 layers. The apparent correlation in hysteresis phenomena, including current density–voltage (J–V) curves, appears as a function of the type of band alignment. Density functional theory calculations reveal the intimate relationship between oxygen vacancies, deep trap states, and charge transport efficiency at the interface between the TiO2 and SnO2 layers. The formation of cascade band alignment via control over the TiO2 underlayer enhances device performance and suppresses hysteresis. Optimal performance exhibits a power conversion efficiency (PCE) of 23.45% with an open‐circuit voltage (Voc) of 1.184 V, showing better device stability under maximum power point tracking compared with a staggered bilayer under one‐sun continuous illumination. This study demonstrates a simple and effective atomic reconstruction for an efficient TiO2/SnO2 heterojunction bilayer for the electron transport layer used in a perovskite solar cell. The fundamental understanding of this work may leverage the potential of heterojunction ETLs and further investigation in materials science, particularly for the development of an efficient charge transport layer in metal halide perovskite photovoltaics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12347</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1005-100X</orcidid><orcidid>https://orcid.org/0000-0002-5315-1908</orcidid><orcidid>https://orcid.org/0000-0001-5212-2681</orcidid><orcidid>https://orcid.org/0000-0003-4345-1322</orcidid><orcidid>https://orcid.org/0000-0003-2704-8162</orcidid><orcidid>https://orcid.org/0000-0003-1463-6723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.342-n/a
issn 2575-0356
2575-0348
2575-0356
language eng
recordid cdi_wanfang_journals_nyyhjcl_e202302034
source Wiley Online Library (Open Access Collection)
subjects Alignment
Carrier transport
Charge efficiency
Charge transport
Circuits
Current carriers
Density functional theory
Electric potential
Electron transport
electron transport bilayer
Energy conversion efficiency
heterojunction bilayers
Heterojunctions
Hysteresis
interfacial defect
Maximum power tracking
Oxygen
oxygen vacancy engineering
perovskite solar cells
Perovskites
Photovoltaic cells
Recombination
Solar cells
Tin dioxide
Titanium dioxide
Voltage
title Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alleviating%20Interfacial%20Recombination%20of%20Heterojunction%20Electron%20Transport%20Layer%20via%20Oxygen%20Vacancy%20Engineering%20for%20Efficient%20Perovskite%20Solar%20Cells%20Over%2023&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Ko,%20Yohan&rft.date=2023-03&rft.volume=6&rft.issue=2&rft.spage=342&rft.epage=n/a&rft.pages=342-n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12347&rft_dat=%3Cwanfang_jour_24P%3Enyyhjcl_e202302034%3C/wanfang_jour_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786782917&rft_id=info:pmid/&rft_wanfj_id=nyyhjcl_e202302034&rfr_iscdi=true