Tailoring Mg2+ Solvation Structure in a Facile All‐Inorganic [MgxLiyCl2x+y·nTHF] Complex Electrolyte for High Rate and Long Cycle‐Life Mg Battery
A high‐performance all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte is synthesized by a simple room‐temperature reaction of LiCl with MgCl2 in tetrahydrofuran (THF) solvent. Molecular dynamics simulation, density functional theory calculation, Raman spectroscopy, and nuclear magne...
Gespeichert in:
Veröffentlicht in: | Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-03, Vol.6 (2), p.236-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | 236 |
container_title | Energy & environmental materials (Hoboken, N.J.) |
container_volume | 6 |
creator | Fan, Haiyan Zhang, Xinxin Zhao, Yuxing Xiao, Jianhua Yuan, Hua Wang, Guang Lin, Yitao Zhang, Jifang Pan, Ludi Pan, Ting Liu, Yang Zhang, Yuegang |
description | A high‐performance all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte is synthesized by a simple room‐temperature reaction of LiCl with MgCl2 in tetrahydrofuran (THF) solvent. Molecular dynamics simulation, density functional theory calculation, Raman spectroscopy, and nuclear magnetic resonance spectroscopy reveal that the formation of [MgxLiyCl2x+y·nTHF] complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg2+, which significantly enhances its de‐solvation kinetics. The MLCC electrolyte presents a stable electrochemical window up to 3.1 V (vs Mg/Mg2+) and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99% at current densities as high as 10 mA cm−2. Utilizing the MLCC electrolyte, a Mg/Mo6S8 full cell can be cycled for over 10 000 cycles with a superior capacity retention of 85 mA h g−1 under an ultrahigh rate of 50 C (1 C = 128.8 mA g−1). The facile synthesis of high‐performance MLCC electrolyte provides a promising solution for future practical magnesium batteries.
An all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte, with a unique solvation structure and fast surficial redox kinetics, was synthesized using a simple reaction of MgCl2 and LiCl salts in THF solvent at room temperature. The Mg/Mo6S8 full cells using the MLCC electrolyte achieved a superior capacity retention of 85 mA h g−1 after 10 000 cycles at an ultrahigh rate of 50 C. |
doi_str_mv | 10.1002/eem2.12327 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_24P</sourceid><recordid>TN_cdi_wanfang_journals_nyyhjcl_e202302022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>nyyhjcl_e202302022</wanfj_id><sourcerecordid>nyyhjcl_e202302022</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2267-72d54c1ad67bc09085ff17eef555ccbd656b0a8a8e8ac805fd34e13fe5cf34043</originalsourceid><addsrcrecordid>eNpNkc1uEzEUhUcIJKrSDU9giR1VWvt6PDNZllFCKk2ERMMKIcvxXE8dOXZwJhDveISueBX2PApPgvsjweqeK3069-qconjN6AWjFC4Rt3DBgEP9rDgBUYsJ5aJ6_p9-WZzt9xuaYcp4yaYnxc-Vsi5E6weyHOCc3AT3TY02eHIzxoMeDxGJ9USRudLWIbly7s-Pu2sf4qC81eTzcjh2NrUOjufp9y-_Wsy_kDZsdw6PZOZQjzG4NCIxIZKFHW7JR5U35XvShXy0TdphduyswfwBeafGEWN6Vbwwyu3x7GmeFp_ms1W7mHQf3l-3V91kB1DVkxp6UWqm-qpeazqljTCG1YhGCKH1uq9EtaaqUQ02SjdUmJ6XyLhBoQ0vaclPi7ePvt-VN8oPchMO0eeL0qd0u9FOIlDgOS-ADL95hHcxfD3gfvxHQ91UdQNTNs0Ue7LMeSW5i3arYpKMyvuS5H1J8qEkOZst4UHxv_UUiVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786782919</pqid></control><display><type>article</type><title>Tailoring Mg2+ Solvation Structure in a Facile All‐Inorganic [MgxLiyCl2x+y·nTHF] Complex Electrolyte for High Rate and Long Cycle‐Life Mg Battery</title><source>Wiley Online Library Open Access</source><creator>Fan, Haiyan ; Zhang, Xinxin ; Zhao, Yuxing ; Xiao, Jianhua ; Yuan, Hua ; Wang, Guang ; Lin, Yitao ; Zhang, Jifang ; Pan, Ludi ; Pan, Ting ; Liu, Yang ; Zhang, Yuegang</creator><creatorcontrib>Fan, Haiyan ; Zhang, Xinxin ; Zhao, Yuxing ; Xiao, Jianhua ; Yuan, Hua ; Wang, Guang ; Lin, Yitao ; Zhang, Jifang ; Pan, Ludi ; Pan, Ting ; Liu, Yang ; Zhang, Yuegang</creatorcontrib><description>A high‐performance all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte is synthesized by a simple room‐temperature reaction of LiCl with MgCl2 in tetrahydrofuran (THF) solvent. Molecular dynamics simulation, density functional theory calculation, Raman spectroscopy, and nuclear magnetic resonance spectroscopy reveal that the formation of [MgxLiyCl2x+y·nTHF] complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg2+, which significantly enhances its de‐solvation kinetics. The MLCC electrolyte presents a stable electrochemical window up to 3.1 V (vs Mg/Mg2+) and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99% at current densities as high as 10 mA cm−2. Utilizing the MLCC electrolyte, a Mg/Mo6S8 full cell can be cycled for over 10 000 cycles with a superior capacity retention of 85 mA h g−1 under an ultrahigh rate of 50 C (1 C = 128.8 mA g−1). The facile synthesis of high‐performance MLCC electrolyte provides a promising solution for future practical magnesium batteries.
An all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte, with a unique solvation structure and fast surficial redox kinetics, was synthesized using a simple reaction of MgCl2 and LiCl salts in THF solvent at room temperature. The Mg/Mo6S8 full cells using the MLCC electrolyte achieved a superior capacity retention of 85 mA h g−1 after 10 000 cycles at an ultrahigh rate of 50 C.</description><identifier>ISSN: 2575-0356</identifier><identifier>ISSN: 2575-0348</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12327</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Battery cycles ; Coordination numbers ; cycle life ; Density functional theory ; Electrochemistry ; electrolyte ; Lithium ; Lithium chloride ; Magnesium ; Magnesium chloride ; Magnetic resonance spectroscopy ; Mg battery ; Molecular dynamics ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Pollutant deposition ; Raman spectroscopy ; Sheaths ; Solvation ; solvation structure ; Spectroscopy ; Tetrahydrofuran</subject><ispartof>Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.236-n/a</ispartof><rights>2022 Zhengzhou University</rights><rights>2023 Zhengzhou University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0344-8399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/nyyhjcl-e/nyyhjcl-e.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12327$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12327$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11542,27903,27904,45553,45554,46030,46387,46454,46811</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12327$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Fan, Haiyan</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Zhao, Yuxing</creatorcontrib><creatorcontrib>Xiao, Jianhua</creatorcontrib><creatorcontrib>Yuan, Hua</creatorcontrib><creatorcontrib>Wang, Guang</creatorcontrib><creatorcontrib>Lin, Yitao</creatorcontrib><creatorcontrib>Zhang, Jifang</creatorcontrib><creatorcontrib>Pan, Ludi</creatorcontrib><creatorcontrib>Pan, Ting</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhang, Yuegang</creatorcontrib><title>Tailoring Mg2+ Solvation Structure in a Facile All‐Inorganic [MgxLiyCl2x+y·nTHF] Complex Electrolyte for High Rate and Long Cycle‐Life Mg Battery</title><title>Energy & environmental materials (Hoboken, N.J.)</title><description>A high‐performance all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte is synthesized by a simple room‐temperature reaction of LiCl with MgCl2 in tetrahydrofuran (THF) solvent. Molecular dynamics simulation, density functional theory calculation, Raman spectroscopy, and nuclear magnetic resonance spectroscopy reveal that the formation of [MgxLiyCl2x+y·nTHF] complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg2+, which significantly enhances its de‐solvation kinetics. The MLCC electrolyte presents a stable electrochemical window up to 3.1 V (vs Mg/Mg2+) and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99% at current densities as high as 10 mA cm−2. Utilizing the MLCC electrolyte, a Mg/Mo6S8 full cell can be cycled for over 10 000 cycles with a superior capacity retention of 85 mA h g−1 under an ultrahigh rate of 50 C (1 C = 128.8 mA g−1). The facile synthesis of high‐performance MLCC electrolyte provides a promising solution for future practical magnesium batteries.
An all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte, with a unique solvation structure and fast surficial redox kinetics, was synthesized using a simple reaction of MgCl2 and LiCl salts in THF solvent at room temperature. The Mg/Mo6S8 full cells using the MLCC electrolyte achieved a superior capacity retention of 85 mA h g−1 after 10 000 cycles at an ultrahigh rate of 50 C.</description><subject>Battery cycles</subject><subject>Coordination numbers</subject><subject>cycle life</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>electrolyte</subject><subject>Lithium</subject><subject>Lithium chloride</subject><subject>Magnesium</subject><subject>Magnesium chloride</subject><subject>Magnetic resonance spectroscopy</subject><subject>Mg battery</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Pollutant deposition</subject><subject>Raman spectroscopy</subject><subject>Sheaths</subject><subject>Solvation</subject><subject>solvation structure</subject><subject>Spectroscopy</subject><subject>Tetrahydrofuran</subject><issn>2575-0356</issn><issn>2575-0348</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkc1uEzEUhUcIJKrSDU9giR1VWvt6PDNZllFCKk2ERMMKIcvxXE8dOXZwJhDveISueBX2PApPgvsjweqeK3069-qconjN6AWjFC4Rt3DBgEP9rDgBUYsJ5aJ6_p9-WZzt9xuaYcp4yaYnxc-Vsi5E6weyHOCc3AT3TY02eHIzxoMeDxGJ9USRudLWIbly7s-Pu2sf4qC81eTzcjh2NrUOjufp9y-_Wsy_kDZsdw6PZOZQjzG4NCIxIZKFHW7JR5U35XvShXy0TdphduyswfwBeafGEWN6Vbwwyu3x7GmeFp_ms1W7mHQf3l-3V91kB1DVkxp6UWqm-qpeazqljTCG1YhGCKH1uq9EtaaqUQ02SjdUmJ6XyLhBoQ0vaclPi7ePvt-VN8oPchMO0eeL0qd0u9FOIlDgOS-ADL95hHcxfD3gfvxHQ91UdQNTNs0Ue7LMeSW5i3arYpKMyvuS5H1J8qEkOZst4UHxv_UUiVc</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Fan, Haiyan</creator><creator>Zhang, Xinxin</creator><creator>Zhao, Yuxing</creator><creator>Xiao, Jianhua</creator><creator>Yuan, Hua</creator><creator>Wang, Guang</creator><creator>Lin, Yitao</creator><creator>Zhang, Jifang</creator><creator>Pan, Ludi</creator><creator>Pan, Ting</creator><creator>Liu, Yang</creator><creator>Zhang, Yuegang</creator><general>Wiley Subscription Services, Inc</general><general>State Key Laboratory of Low-Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China</general><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-0344-8399</orcidid></search><sort><creationdate>202303</creationdate><title>Tailoring Mg2+ Solvation Structure in a Facile All‐Inorganic [MgxLiyCl2x+y·nTHF] Complex Electrolyte for High Rate and Long Cycle‐Life Mg Battery</title><author>Fan, Haiyan ; Zhang, Xinxin ; Zhao, Yuxing ; Xiao, Jianhua ; Yuan, Hua ; Wang, Guang ; Lin, Yitao ; Zhang, Jifang ; Pan, Ludi ; Pan, Ting ; Liu, Yang ; Zhang, Yuegang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2267-72d54c1ad67bc09085ff17eef555ccbd656b0a8a8e8ac805fd34e13fe5cf34043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Battery cycles</topic><topic>Coordination numbers</topic><topic>cycle life</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>electrolyte</topic><topic>Lithium</topic><topic>Lithium chloride</topic><topic>Magnesium</topic><topic>Magnesium chloride</topic><topic>Magnetic resonance spectroscopy</topic><topic>Mg battery</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Pollutant deposition</topic><topic>Raman spectroscopy</topic><topic>Sheaths</topic><topic>Solvation</topic><topic>solvation structure</topic><topic>Spectroscopy</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Haiyan</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Zhao, Yuxing</creatorcontrib><creatorcontrib>Xiao, Jianhua</creatorcontrib><creatorcontrib>Yuan, Hua</creatorcontrib><creatorcontrib>Wang, Guang</creatorcontrib><creatorcontrib>Lin, Yitao</creatorcontrib><creatorcontrib>Zhang, Jifang</creatorcontrib><creatorcontrib>Pan, Ludi</creatorcontrib><creatorcontrib>Pan, Ting</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhang, Yuegang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Haiyan</au><au>Zhang, Xinxin</au><au>Zhao, Yuxing</au><au>Xiao, Jianhua</au><au>Yuan, Hua</au><au>Wang, Guang</au><au>Lin, Yitao</au><au>Zhang, Jifang</au><au>Pan, Ludi</au><au>Pan, Ting</au><au>Liu, Yang</au><au>Zhang, Yuegang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Mg2+ Solvation Structure in a Facile All‐Inorganic [MgxLiyCl2x+y·nTHF] Complex Electrolyte for High Rate and Long Cycle‐Life Mg Battery</atitle><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>236</spage><epage>n/a</epage><pages>236-n/a</pages><issn>2575-0356</issn><issn>2575-0348</issn><eissn>2575-0356</eissn><abstract>A high‐performance all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte is synthesized by a simple room‐temperature reaction of LiCl with MgCl2 in tetrahydrofuran (THF) solvent. Molecular dynamics simulation, density functional theory calculation, Raman spectroscopy, and nuclear magnetic resonance spectroscopy reveal that the formation of [MgxLiyCl2x+y·nTHF] complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg2+, which significantly enhances its de‐solvation kinetics. The MLCC electrolyte presents a stable electrochemical window up to 3.1 V (vs Mg/Mg2+) and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99% at current densities as high as 10 mA cm−2. Utilizing the MLCC electrolyte, a Mg/Mo6S8 full cell can be cycled for over 10 000 cycles with a superior capacity retention of 85 mA h g−1 under an ultrahigh rate of 50 C (1 C = 128.8 mA g−1). The facile synthesis of high‐performance MLCC electrolyte provides a promising solution for future practical magnesium batteries.
An all‐inorganic magnesium–lithium chloride complex (MLCC) electrolyte, with a unique solvation structure and fast surficial redox kinetics, was synthesized using a simple reaction of MgCl2 and LiCl salts in THF solvent at room temperature. The Mg/Mo6S8 full cells using the MLCC electrolyte achieved a superior capacity retention of 85 mA h g−1 after 10 000 cycles at an ultrahigh rate of 50 C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12327</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0344-8399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2575-0356 |
ispartof | Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.236-n/a |
issn | 2575-0356 2575-0348 2575-0356 |
language | eng |
recordid | cdi_wanfang_journals_nyyhjcl_e202302022 |
source | Wiley Online Library Open Access |
subjects | Battery cycles Coordination numbers cycle life Density functional theory Electrochemistry electrolyte Lithium Lithium chloride Magnesium Magnesium chloride Magnetic resonance spectroscopy Mg battery Molecular dynamics NMR NMR spectroscopy Nuclear magnetic resonance Pollutant deposition Raman spectroscopy Sheaths Solvation solvation structure Spectroscopy Tetrahydrofuran |
title | Tailoring Mg2+ Solvation Structure in a Facile All‐Inorganic [MgxLiyCl2x+y·nTHF] Complex Electrolyte for High Rate and Long Cycle‐Life Mg Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Mg2+%20Solvation%20Structure%20in%20a%20Facile%20All%E2%80%90Inorganic%20%5BMgxLiyCl2x+y%C2%B7nTHF%5D%20Complex%20Electrolyte%20for%20High%20Rate%20and%20Long%20Cycle%E2%80%90Life%20Mg%20Battery&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Fan,%20Haiyan&rft.date=2023-03&rft.volume=6&rft.issue=2&rft.spage=236&rft.epage=n/a&rft.pages=236-n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12327&rft_dat=%3Cwanfang_jour_24P%3Enyyhjcl_e202302022%3C/wanfang_jour_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786782919&rft_id=info:pmid/&rft_wanfj_id=nyyhjcl_e202302022&rfr_iscdi=true |