Thermodynamic Modeling and Simulation of Air System Control Device
This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system c...
Gespeichert in:
Veröffentlicht in: | Transactions of Nanjing University of Aeronautics & Astronautics 2019-06, Vol.36 (3), p.517-526 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 3 |
container_start_page | 517 |
container_title | Transactions of Nanjing University of Aeronautics & Astronautics |
container_volume | 36 |
creator | Fu, Jiangfeng Li, Huacong Liu, Xianwei Hong, Linxiong |
description | This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated. The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃. The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining. The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s. Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit. |
doi_str_mv | 10.16356/j.1005-1120.2019.03.016 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_njhkhtdxxb_e201903016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>njhkhtdxxb_e201903016</wanfj_id><sourcerecordid>njhkhtdxxb_e201903016</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1366-6f923d8f521eff6f3360bf99b717e938c22ebae5a62165f26d64aef7ad217553</originalsourceid><addsrcrecordid>eNpFj81OwzAQhH0Aiar0HSxxTlh78SY5lvJXqYhDe6-c2G5cErskKbRvT1ERnEYafTOjYYwLSAWhotttKgBUIoSEVIIoUsAUBF2w0Z9_xSZ970sAygCznEbsflXbro3mGHTrK_4ajW182HAdDF_6dt_owcfAo-NT3_HlsR9sy2cxDF1s-IP99JW9ZpdON72d_OqYrZ4eV7OXZPH2PJ9NF8lOIFFCrpBocqeksM6RQyQoXVGUmchsgXklpS21VZqkIOUkGbrT1mXaSJEphWOWnGu_dHA6bNbbuO_CaXAdtvV7PZjDoVzbn-OAp9sn_ubM77r4sbf98B-QMkdJiID4DXA8W4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283263303</pqid></control><display><type>article</type><title>Thermodynamic Modeling and Simulation of Air System Control Device</title><source>Alma/SFX Local Collection</source><creator>Fu, Jiangfeng ; Li, Huacong ; Liu, Xianwei ; Hong, Linxiong</creator><creatorcontrib>Fu, Jiangfeng ; Li, Huacong ; Liu, Xianwei ; Hong, Linxiong</creatorcontrib><description>This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated. The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃. The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining. The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s. Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.</description><identifier>ISSN: 1005-1120</identifier><identifier>DOI: 10.16356/j.1005-1120.2019.03.016</identifier><language>chi ; eng</language><publisher>Nanjing: Nanjing University of Aeronautics and Astronautics</publisher><subject>Actuation ; Air entrainment ; Air flow ; Air temperature ; Ambient temperature ; Bleeding ; Computer simulation ; Conduction heating ; Conductive heat transfer ; Control systems ; Dynamic response ; Heat ; Heat exchange ; Laminar flow ; Laminar heat transfer ; Maintenance management ; Sealing ; Temperature effects ; Thermodynamic models ; Time compression</subject><ispartof>Transactions of Nanjing University of Aeronautics & Astronautics, 2019-06, Vol.36 (3), p.517-526</ispartof><rights>Copyright Nanjing University of Aeronautics and Astronautics 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/njhkhtdxxb-e/njhkhtdxxb-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fu, Jiangfeng</creatorcontrib><creatorcontrib>Li, Huacong</creatorcontrib><creatorcontrib>Liu, Xianwei</creatorcontrib><creatorcontrib>Hong, Linxiong</creatorcontrib><title>Thermodynamic Modeling and Simulation of Air System Control Device</title><title>Transactions of Nanjing University of Aeronautics & Astronautics</title><description>This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated. The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃. The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining. The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s. Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.</description><subject>Actuation</subject><subject>Air entrainment</subject><subject>Air flow</subject><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>Bleeding</subject><subject>Computer simulation</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Control systems</subject><subject>Dynamic response</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Laminar flow</subject><subject>Laminar heat transfer</subject><subject>Maintenance management</subject><subject>Sealing</subject><subject>Temperature effects</subject><subject>Thermodynamic models</subject><subject>Time compression</subject><issn>1005-1120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFj81OwzAQhH0Aiar0HSxxTlh78SY5lvJXqYhDe6-c2G5cErskKbRvT1ERnEYafTOjYYwLSAWhotttKgBUIoSEVIIoUsAUBF2w0Z9_xSZ970sAygCznEbsflXbro3mGHTrK_4ajW182HAdDF_6dt_owcfAo-NT3_HlsR9sy2cxDF1s-IP99JW9ZpdON72d_OqYrZ4eV7OXZPH2PJ9NF8lOIFFCrpBocqeksM6RQyQoXVGUmchsgXklpS21VZqkIOUkGbrT1mXaSJEphWOWnGu_dHA6bNbbuO_CaXAdtvV7PZjDoVzbn-OAp9sn_ubM77r4sbf98B-QMkdJiID4DXA8W4s</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Fu, Jiangfeng</creator><creator>Li, Huacong</creator><creator>Liu, Xianwei</creator><creator>Hong, Linxiong</creator><general>Nanjing University of Aeronautics and Astronautics</general><general>College of Power and Energy,Northwestern Polytechnical University,Xi'an 710072,P.R. China</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190601</creationdate><title>Thermodynamic Modeling and Simulation of Air System Control Device</title><author>Fu, Jiangfeng ; Li, Huacong ; Liu, Xianwei ; Hong, Linxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1366-6f923d8f521eff6f3360bf99b717e938c22ebae5a62165f26d64aef7ad217553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Air entrainment</topic><topic>Air flow</topic><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>Bleeding</topic><topic>Computer simulation</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Control systems</topic><topic>Dynamic response</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Laminar flow</topic><topic>Laminar heat transfer</topic><topic>Maintenance management</topic><topic>Sealing</topic><topic>Temperature effects</topic><topic>Thermodynamic models</topic><topic>Time compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jiangfeng</creatorcontrib><creatorcontrib>Li, Huacong</creatorcontrib><creatorcontrib>Liu, Xianwei</creatorcontrib><creatorcontrib>Hong, Linxiong</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Nanjing University of Aeronautics & Astronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Jiangfeng</au><au>Li, Huacong</au><au>Liu, Xianwei</au><au>Hong, Linxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Modeling and Simulation of Air System Control Device</atitle><jtitle>Transactions of Nanjing University of Aeronautics & Astronautics</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>36</volume><issue>3</issue><spage>517</spage><epage>526</epage><pages>517-526</pages><issn>1005-1120</issn><abstract>This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated. The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃. The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining. The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s. Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.</abstract><cop>Nanjing</cop><pub>Nanjing University of Aeronautics and Astronautics</pub><doi>10.16356/j.1005-1120.2019.03.016</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1120 |
ispartof | Transactions of Nanjing University of Aeronautics & Astronautics, 2019-06, Vol.36 (3), p.517-526 |
issn | 1005-1120 |
language | chi ; eng |
recordid | cdi_wanfang_journals_njhkhtdxxb_e201903016 |
source | Alma/SFX Local Collection |
subjects | Actuation Air entrainment Air flow Air temperature Ambient temperature Bleeding Computer simulation Conduction heating Conductive heat transfer Control systems Dynamic response Heat Heat exchange Laminar flow Laminar heat transfer Maintenance management Sealing Temperature effects Thermodynamic models Time compression |
title | Thermodynamic Modeling and Simulation of Air System Control Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Modeling%20and%20Simulation%20of%20Air%20System%20Control%20Device&rft.jtitle=Transactions%20of%20Nanjing%20University%20of%20Aeronautics%20&%20Astronautics&rft.au=Fu,%20Jiangfeng&rft.date=2019-06-01&rft.volume=36&rft.issue=3&rft.spage=517&rft.epage=526&rft.pages=517-526&rft.issn=1005-1120&rft_id=info:doi/10.16356/j.1005-1120.2019.03.016&rft_dat=%3Cwanfang_jour_proqu%3Enjhkhtdxxb_e201903016%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283263303&rft_id=info:pmid/&rft_wanfj_id=njhkhtdxxb_e201903016&rfr_iscdi=true |