Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger
Mathematical model of cross type multi-stream plate-fin heat exchanger is established. Meanwhile, mean square error of accumulative heat load is normalized by dimensionless, and the equations of temperature-difference uniformity factor are improved. Evaluation factors above and performance of heat e...
Gespeichert in:
Veröffentlicht in: | 南京航空航天大学学报(英文版) 2017-10, Vol.34 (5), p.553-560 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 5 |
container_start_page | 553 |
container_title | 南京航空航天大学学报(英文版) |
container_volume | 34 |
creator | Li Jun Wang Yu Jiang Yanlong Shi Hong Zheng Wenyuan |
description | Mathematical model of cross type multi-stream plate-fin heat exchanger is established. Meanwhile, mean square error of accumulative heat load is normalized by dimensionless, and the equations of temperature-difference uniformity factor are improved. Evaluation factors above and performance of heat exchanger are compared and ana- lyzed by taking aircraft three-stream condenser as an example. The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages. So it can be influenced by passage arrangement, flow inlet parameters as well as flow patterns. Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange per- formance and will not change dramatically with the variation of flow inlet parameters and flow patterns. Tempera- ture-difference uniformity factor is influenced by passage arrangement and flow patterns. It remains basically un- changed under a certain range of flow inlet parameters. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_njhkhtdxxb_e201705010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673854102</cqvip_id><wanfj_id>njhkhtdxxb_e201705010</wanfj_id><sourcerecordid>njhkhtdxxb_e201705010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1350-713eb638b417c621ca420a596f32e65b2f80b3dc6c2744d8e7e890ed525b4b33</originalsourceid><addsrcrecordid>eNotjbFugzAURRlaKVGaf7C6W3q2sU3GKiKlUqJmyI5s8wikYFpjWvr3RUqnO9xz73lI1gxAUsY4rJLtOLYWQGkQOlPrpDhjqIfQG--Q5N-mm0xsB09OGJuhGsnSkdPUxZaOMaDpybkzEemh9aRAE0k-u8b4K4an5LE23Yjb_9wkl0N-2Rf0-P76tn85UseEBKqZQKtEZlOmneLMmZSDkTtVC45KWl5nYEXllOM6TasMNWY7wEpyaVMrxCah99sf4-tFXN6GKfhFWPpb89HEap5tiRyYBgkMFv75zrtm8Nevdll8hrY34bdUWmQyZcDFH2MRVj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger</title><source>Alma/SFX Local Collection</source><creator>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</creator><creatorcontrib>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</creatorcontrib><description>Mathematical model of cross type multi-stream plate-fin heat exchanger is established. Meanwhile, mean square error of accumulative heat load is normalized by dimensionless, and the equations of temperature-difference uniformity factor are improved. Evaluation factors above and performance of heat exchanger are compared and ana- lyzed by taking aircraft three-stream condenser as an example. The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages. So it can be influenced by passage arrangement, flow inlet parameters as well as flow patterns. Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange per- formance and will not change dramatically with the variation of flow inlet parameters and flow patterns. Tempera- ture-difference uniformity factor is influenced by passage arrangement and flow patterns. It remains basically un- changed under a certain range of flow inlet parameters.</description><identifier>ISSN: 1005-1120</identifier><language>eng</language><publisher>School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,P.R.China</publisher><ispartof>南京航空航天大学学报(英文版), 2017-10, Vol.34 (5), p.553-560</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85388X/85388X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</creatorcontrib><title>Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger</title><title>南京航空航天大学学报(英文版)</title><addtitle>Transactions of Nanjing University of Aeronautics & Astronautics</addtitle><description>Mathematical model of cross type multi-stream plate-fin heat exchanger is established. Meanwhile, mean square error of accumulative heat load is normalized by dimensionless, and the equations of temperature-difference uniformity factor are improved. Evaluation factors above and performance of heat exchanger are compared and ana- lyzed by taking aircraft three-stream condenser as an example. The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages. So it can be influenced by passage arrangement, flow inlet parameters as well as flow patterns. Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange per- formance and will not change dramatically with the variation of flow inlet parameters and flow patterns. Tempera- ture-difference uniformity factor is influenced by passage arrangement and flow patterns. It remains basically un- changed under a certain range of flow inlet parameters.</description><issn>1005-1120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotjbFugzAURRlaKVGaf7C6W3q2sU3GKiKlUqJmyI5s8wikYFpjWvr3RUqnO9xz73lI1gxAUsY4rJLtOLYWQGkQOlPrpDhjqIfQG--Q5N-mm0xsB09OGJuhGsnSkdPUxZaOMaDpybkzEemh9aRAE0k-u8b4K4an5LE23Yjb_9wkl0N-2Rf0-P76tn85UseEBKqZQKtEZlOmneLMmZSDkTtVC45KWl5nYEXllOM6TasMNWY7wEpyaVMrxCah99sf4-tFXN6GKfhFWPpb89HEap5tiRyYBgkMFv75zrtm8Nevdll8hrY34bdUWmQyZcDFH2MRVj0</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</creator><general>School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,P.R.China</general><general>College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China%Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing 210016,P.R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20171001</creationdate><title>Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger</title><author>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1350-713eb638b417c621ca420a596f32e65b2f80b3dc6c2744d8e7e890ed525b4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>南京航空航天大学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li Jun;Wang Yu;Jiang Yanlong;Shi Hong;Zheng Wenyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger</atitle><jtitle>南京航空航天大学学报(英文版)</jtitle><addtitle>Transactions of Nanjing University of Aeronautics & Astronautics</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>34</volume><issue>5</issue><spage>553</spage><epage>560</epage><pages>553-560</pages><issn>1005-1120</issn><abstract>Mathematical model of cross type multi-stream plate-fin heat exchanger is established. Meanwhile, mean square error of accumulative heat load is normalized by dimensionless, and the equations of temperature-difference uniformity factor are improved. Evaluation factors above and performance of heat exchanger are compared and ana- lyzed by taking aircraft three-stream condenser as an example. The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages. So it can be influenced by passage arrangement, flow inlet parameters as well as flow patterns. Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange per- formance and will not change dramatically with the variation of flow inlet parameters and flow patterns. Tempera- ture-difference uniformity factor is influenced by passage arrangement and flow patterns. It remains basically un- changed under a certain range of flow inlet parameters.</abstract><pub>School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,P.R.China</pub><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1120 |
ispartof | 南京航空航天大学学报(英文版), 2017-10, Vol.34 (5), p.553-560 |
issn | 1005-1120 |
language | eng |
recordid | cdi_wanfang_journals_njhkhtdxxb_e201705010 |
source | Alma/SFX Local Collection |
title | Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20Methods%20for%20Multi-stream%20Plate-Fin%20Heat%20Exchanger&rft.jtitle=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Li%20Jun;Wang%20Yu;Jiang%20Yanlong;Shi%20Hong;Zheng%20Wenyuan&rft.date=2017-10-01&rft.volume=34&rft.issue=5&rft.spage=553&rft.epage=560&rft.pages=553-560&rft.issn=1005-1120&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Enjhkhtdxxb_e201705010%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=673854102&rft_wanfj_id=njhkhtdxxb_e201705010&rfr_iscdi=true |