Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization
Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is prop...
Gespeichert in:
Veröffentlicht in: | Transactions of Nanjing University of Aeronautics & Astronautics 2014-08, Vol.31 (4), p.362-369 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 4 |
container_start_page | 362 |
container_title | Transactions of Nanjing University of Aeronautics & Astronautics |
container_volume | 31 |
creator | 吴一全 孟天亮 吴诗婳 卢文平 |
description | Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_njhkhtdxxb_e201404002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662342783</cqvip_id><wanfj_id>njhkhtdxxb_e201404002</wanfj_id><sourcerecordid>njhkhtdxxb_e201404002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1682-1691fa5a3ae0a873565cdef2cdede7cf04e2a3893cea23db539e8e4fbc09886b3</originalsourceid><addsrcrecordid>eNotj01Lw0AQhnNQsNT-h8WTl8B-JJvNsS21CkpB6zlMdifN1nS3zabY-OtdqZcZXubheZmbZMIozVPGOL1LZiHYmlJZUFEoOUnqbdtjaH1nyAd2qAfrHXnDofWGLCCgITG_o7bH3mvoyLqHkazc0PvjSMAZMu8H21ht422BSJa-824km-NgD_YH_nT3yW0DXcDZ_54mn0-r7fI5fd2sX5bz11QzqXjKZMkayEEAUlCFyGWuDTY8DoOFbmiGHIQqhUbgwtS5KFFh1tSalkrJWkyT9Or9BteA21V7f-5dbKzcvv1qB3O51BVyyjKaUcoj_3jl42unM4ahOtigsevAoT-HiklJaSnKjEX04Yrq1rvdyUb5sbcH6MdKSi4yXighfgH4Y29l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660093941</pqid></control><display><type>article</type><title>Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization</title><source>Alma/SFX Local Collection</source><creator>吴一全 孟天亮 吴诗婳 卢文平</creator><creatorcontrib>吴一全 孟天亮 吴诗婳 卢文平</creatorcontrib><description>Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.</description><identifier>ISSN: 1005-1120</identifier><language>eng</language><publisher>Key Laboratory of the Yellow River Sediment of Ministry of Water Resource, Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, P.R.China</publisher><subject>Division ; Entropy ; Entropy (Information) ; Histograms ; Mutations ; Optimization ; Swarm intelligence ; Thresholds ; Variability</subject><ispartof>Transactions of Nanjing University of Aeronautics & Astronautics, 2014-08, Vol.31 (4), p.362-369</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85388X/85388X.jpg</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>吴一全 孟天亮 吴诗婳 卢文平</creatorcontrib><title>Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization</title><title>Transactions of Nanjing University of Aeronautics & Astronautics</title><addtitle>Transactions of Nanjing University of Aeronautics & Astronautics</addtitle><description>Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.</description><subject>Division</subject><subject>Entropy</subject><subject>Entropy (Information)</subject><subject>Histograms</subject><subject>Mutations</subject><subject>Optimization</subject><subject>Swarm intelligence</subject><subject>Thresholds</subject><subject>Variability</subject><issn>1005-1120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotj01Lw0AQhnNQsNT-h8WTl8B-JJvNsS21CkpB6zlMdifN1nS3zabY-OtdqZcZXubheZmbZMIozVPGOL1LZiHYmlJZUFEoOUnqbdtjaH1nyAd2qAfrHXnDofWGLCCgITG_o7bH3mvoyLqHkazc0PvjSMAZMu8H21ht422BSJa-824km-NgD_YH_nT3yW0DXcDZ_54mn0-r7fI5fd2sX5bz11QzqXjKZMkayEEAUlCFyGWuDTY8DoOFbmiGHIQqhUbgwtS5KFFh1tSalkrJWkyT9Or9BteA21V7f-5dbKzcvv1qB3O51BVyyjKaUcoj_3jl42unM4ahOtigsevAoT-HiklJaSnKjEX04Yrq1rvdyUb5sbcH6MdKSi4yXighfgH4Y29l</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>吴一全 孟天亮 吴诗婳 卢文平</creator><general>Key Laboratory of the Yellow River Sediment of Ministry of Water Resource, Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, P.R.China</general><general>State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology,Harbin, 150090, P.R.China</general><general>College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing, 210016, P.R.China</general><general>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P.R.China%College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing, 210016, P.R.China%Engineering Technology Research Center of Wuhan Intelligent Basin, Changjiang River Scientific Research Institute,Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan, 430010, P.R.China</general><general>Engineering Technology Research Center of Wuhan Intelligent Basin, Changjiang River Scientific Research Institute,Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan, 430010, P.R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140801</creationdate><title>Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization</title><author>吴一全 孟天亮 吴诗婳 卢文平</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1682-1691fa5a3ae0a873565cdef2cdede7cf04e2a3893cea23db539e8e4fbc09886b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Division</topic><topic>Entropy</topic><topic>Entropy (Information)</topic><topic>Histograms</topic><topic>Mutations</topic><topic>Optimization</topic><topic>Swarm intelligence</topic><topic>Thresholds</topic><topic>Variability</topic><toplevel>online_resources</toplevel><creatorcontrib>吴一全 孟天亮 吴诗婳 卢文平</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Nanjing University of Aeronautics & Astronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>吴一全 孟天亮 吴诗婳 卢文平</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization</atitle><jtitle>Transactions of Nanjing University of Aeronautics & Astronautics</jtitle><addtitle>Transactions of Nanjing University of Aeronautics & Astronautics</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>31</volume><issue>4</issue><spage>362</spage><epage>369</epage><pages>362-369</pages><issn>1005-1120</issn><abstract>Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.</abstract><pub>Key Laboratory of the Yellow River Sediment of Ministry of Water Resource, Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, P.R.China</pub><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1120 |
ispartof | Transactions of Nanjing University of Aeronautics & Astronautics, 2014-08, Vol.31 (4), p.362-369 |
issn | 1005-1120 |
language | eng |
recordid | cdi_wanfang_journals_njhkhtdxxb_e201404002 |
source | Alma/SFX Local Collection |
subjects | Division Entropy Entropy (Information) Histograms Mutations Optimization Swarm intelligence Thresholds Variability |
title | Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20Selection%20Method%20Based%20on%20Reciprocal%20Gray%20Entropy%20and%20Artificial%20Bee%20Colony%20Optimization&rft.jtitle=Transactions%20of%20Nanjing%20University%20of%20Aeronautics%20&%20Astronautics&rft.au=%E5%90%B4%E4%B8%80%E5%85%A8%20%E5%AD%9F%E5%A4%A9%E4%BA%AE%20%E5%90%B4%E8%AF%97%E5%A9%B3%20%E5%8D%A2%E6%96%87%E5%B9%B3&rft.date=2014-08-01&rft.volume=31&rft.issue=4&rft.spage=362&rft.epage=369&rft.pages=362-369&rft.issn=1005-1120&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_proqu%3Enjhkhtdxxb_e201404002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660093941&rft_id=info:pmid/&rft_cqvip_id=662342783&rft_wanfj_id=njhkhtdxxb_e201404002&rfr_iscdi=true |