基于深度卷积特征的露天矿卡车装载状况识别技术研究
TD57; 针对露天矿车辆运输过程中运载量管控受人为及环境等因素干扰较大,存在轻车跑票和人为套票等不利于生产管理的问题,提出了一种基于深度卷积特征的车辆装载状况识别方法.该方法通过构建试验数据集和对卷积神经网络AlexNet模型迁移学习,完成对露天矿卡车装载状况图像深度卷积特征的提取,并基于支持向量机多分类模型,实现对卡车装载状况的自动识别,在此基础上统计露天矿车队运载工作量.试验过程中,基于同一组试验数据集分别对GoogLeNet、ResNet、SqueezeNet、DenseNet模型进行迁移学习,提取卡车装载状况图像深度卷积特征,并使用同一支持向量机多分类模型对卡车装载状况进行自动识别....
Gespeichert in:
Veröffentlicht in: | 煤炭科学技术 2021-10, Vol.49 (10), p.167-176 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!