Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)

Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forestry research 2023-06, Vol.34 (3), p.677-691
Hauptverfasser: Yang, Xiaoming, Xu, Qi, Le, Linlin, Zhou, Tingting, Yu, Wanwen, Wang, Guibin, Fu, Fang-Fang, Cao, Fuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 3
container_start_page 677
container_title Journal of forestry research
container_volume 34
creator Yang, Xiaoming
Xu, Qi
Le, Linlin
Zhou, Tingting
Yu, Wanwen
Wang, Guibin
Fu, Fang-Fang
Cao, Fuliang
description Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase ( FLS ) and UDP-glucuronosyl-transferase ( UGT ) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.
doi_str_mv 10.1007/s11676-022-01519-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lyyj202303010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748025290</galeid><wanfj_id>lyyj202303010</wanfj_id><sourcerecordid>lyyj202303010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</originalsourceid><addsrcrecordid>eNp9klGL1DAQx4soeJ5-AZ8CIpxwXSdJ2zSPx3LeCQu-KPgW0nTazZoma9K9Y7-En9mslTsUkTxMCL___CczUxSvKawogHifKG1EUwJjJdCaylI-Kc6olLyEBsTTfM9U2TTs6_PiRUo7gLrivDorfqzDtNdRz_YOydamObgwHi_JHLVPJtr9HCa8JNr3ZMJZd8HZGck-hsE660dy8FHfoSPzFkkXw70_PU5ottrbNCUSBmK0c5b0GLNFT4YYJjJa_20M5OJmiZ11odNks3r3sng2aJfw1e94Xnz5cP15fVtuPt18XF9tSlNVci65pA3rgSLQ1mDb9SiwazreVQYr0YHkTFfQ1oxpQYWopKCyFx2vKQVTacHPi7dL3nvtB-1HtQuH6LOjcsfjjgHjwIFC5i4WLv_4-wHTrCabDDqnPYZDUpzWnMqWiSajb_5CH3KyFiTNc4H6kRq1Q2X9EHKnzSmpuhJVC6xm8mS7-geVT4-TNcFj7j7-KWCLwMSQUsRB7aOddDwqCuo0e7VsiMobon5tiJJZxBdRyrAfMT5W_B_VTyrdvNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101505</pqid></control><display><type>article</type><title>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Xiaoming ; Xu, Qi ; Le, Linlin ; Zhou, Tingting ; Yu, Wanwen ; Wang, Guibin ; Fu, Fang-Fang ; Cao, Fuliang</creator><creatorcontrib>Yang, Xiaoming ; Xu, Qi ; Le, Linlin ; Zhou, Tingting ; Yu, Wanwen ; Wang, Guibin ; Fu, Fang-Fang ; Cao, Fuliang</creatorcontrib><description>Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase ( FLS ) and UDP-glucuronosyl-transferase ( UGT ) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.</description><identifier>ISSN: 1007-662X</identifier><identifier>EISSN: 1993-0607</identifier><identifier>DOI: 10.1007/s11676-022-01519-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Biomedical and Life Sciences ; Biosynthesis ; Browning ; Callus ; Cell death ; cell structures ; Cytology ; Embryos ; Flavone glycosides ; Flavonoids ; Flavonols ; Forestry ; Gene expression ; gene expression regulation ; Genes ; Ginkgo biloba ; Glycosides ; glycosylation ; Histology ; Isoflavones ; Life Sciences ; Metabolism ; Metabolites ; Original Paper ; Physiological aspects ; Plant metabolites ; Secondary metabolites ; Substrates ; transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>Journal of forestry research, 2023-06, Vol.34 (3), p.677-691</ispartof><rights>Northeast Forestry University 2022. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</citedby><cites>FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lyyj/lyyj.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11676-022-01519-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11676-022-01519-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yang, Xiaoming</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Le, Linlin</creatorcontrib><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Yu, Wanwen</creatorcontrib><creatorcontrib>Wang, Guibin</creatorcontrib><creatorcontrib>Fu, Fang-Fang</creatorcontrib><creatorcontrib>Cao, Fuliang</creatorcontrib><title>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</title><title>Journal of forestry research</title><addtitle>J. For. Res</addtitle><description>Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase ( FLS ) and UDP-glucuronosyl-transferase ( UGT ) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.</description><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Browning</subject><subject>Callus</subject><subject>Cell death</subject><subject>cell structures</subject><subject>Cytology</subject><subject>Embryos</subject><subject>Flavone glycosides</subject><subject>Flavonoids</subject><subject>Flavonols</subject><subject>Forestry</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Genes</subject><subject>Ginkgo biloba</subject><subject>Glycosides</subject><subject>glycosylation</subject><subject>Histology</subject><subject>Isoflavones</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Original Paper</subject><subject>Physiological aspects</subject><subject>Plant metabolites</subject><subject>Secondary metabolites</subject><subject>Substrates</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1007-662X</issn><issn>1993-0607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9klGL1DAQx4soeJ5-AZ8CIpxwXSdJ2zSPx3LeCQu-KPgW0nTazZoma9K9Y7-En9mslTsUkTxMCL___CczUxSvKawogHifKG1EUwJjJdCaylI-Kc6olLyEBsTTfM9U2TTs6_PiRUo7gLrivDorfqzDtNdRz_YOydamObgwHi_JHLVPJtr9HCa8JNr3ZMJZd8HZGck-hsE660dy8FHfoSPzFkkXw70_PU5ottrbNCUSBmK0c5b0GLNFT4YYJjJa_20M5OJmiZ11odNks3r3sng2aJfw1e94Xnz5cP15fVtuPt18XF9tSlNVci65pA3rgSLQ1mDb9SiwazreVQYr0YHkTFfQ1oxpQYWopKCyFx2vKQVTacHPi7dL3nvtB-1HtQuH6LOjcsfjjgHjwIFC5i4WLv_4-wHTrCabDDqnPYZDUpzWnMqWiSajb_5CH3KyFiTNc4H6kRq1Q2X9EHKnzSmpuhJVC6xm8mS7-geVT4-TNcFj7j7-KWCLwMSQUsRB7aOddDwqCuo0e7VsiMobon5tiJJZxBdRyrAfMT5W_B_VTyrdvNo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yang, Xiaoming</creator><creator>Xu, Qi</creator><creator>Le, Linlin</creator><creator>Zhou, Tingting</creator><creator>Yu, Wanwen</creator><creator>Wang, Guibin</creator><creator>Fu, Fang-Fang</creator><creator>Cao, Fuliang</creator><general>Springer Nature Singapore</general><general>Springer</general><general>Springer Nature B.V</general><general>Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037,People's Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230601</creationdate><title>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</title><author>Yang, Xiaoming ; Xu, Qi ; Le, Linlin ; Zhou, Tingting ; Yu, Wanwen ; Wang, Guibin ; Fu, Fang-Fang ; Cao, Fuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Browning</topic><topic>Callus</topic><topic>Cell death</topic><topic>cell structures</topic><topic>Cytology</topic><topic>Embryos</topic><topic>Flavone glycosides</topic><topic>Flavonoids</topic><topic>Flavonols</topic><topic>Forestry</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Genes</topic><topic>Ginkgo biloba</topic><topic>Glycosides</topic><topic>glycosylation</topic><topic>Histology</topic><topic>Isoflavones</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Original Paper</topic><topic>Physiological aspects</topic><topic>Plant metabolites</topic><topic>Secondary metabolites</topic><topic>Substrates</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaoming</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Le, Linlin</creatorcontrib><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Yu, Wanwen</creatorcontrib><creatorcontrib>Wang, Guibin</creatorcontrib><creatorcontrib>Fu, Fang-Fang</creatorcontrib><creatorcontrib>Cao, Fuliang</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of forestry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaoming</au><au>Xu, Qi</au><au>Le, Linlin</au><au>Zhou, Tingting</au><au>Yu, Wanwen</au><au>Wang, Guibin</au><au>Fu, Fang-Fang</au><au>Cao, Fuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</atitle><jtitle>Journal of forestry research</jtitle><stitle>J. For. Res</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><spage>677</spage><epage>691</epage><pages>677-691</pages><issn>1007-662X</issn><eissn>1993-0607</eissn><abstract>Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase ( FLS ) and UDP-glucuronosyl-transferase ( UGT ) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s11676-022-01519-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-662X
ispartof Journal of forestry research, 2023-06, Vol.34 (3), p.677-691
issn 1007-662X
1993-0607
language eng
recordid cdi_wanfang_journals_lyyj202303010
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biosynthesis
Browning
Callus
Cell death
cell structures
Cytology
Embryos
Flavone glycosides
Flavonoids
Flavonols
Forestry
Gene expression
gene expression regulation
Genes
Ginkgo biloba
Glycosides
glycosylation
Histology
Isoflavones
Life Sciences
Metabolism
Metabolites
Original Paper
Physiological aspects
Plant metabolites
Secondary metabolites
Substrates
transcriptome
Transcriptomes
Transcriptomics
title Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20histology,%20transcriptome,%20and%20metabolite%20profiling%20unravel%20the%20browning%20mechanisms%20of%20calli%20derived%20from%20ginkgo%20(Ginkgo%20biloba%20L.)&rft.jtitle=Journal%20of%20forestry%20research&rft.au=Yang,%20Xiaoming&rft.date=2023-06-01&rft.volume=34&rft.issue=3&rft.spage=677&rft.epage=691&rft.pages=677-691&rft.issn=1007-662X&rft.eissn=1993-0607&rft_id=info:doi/10.1007/s11676-022-01519-9&rft_dat=%3Cwanfang_jour_proqu%3Elyyj202303010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809101505&rft_id=info:pmid/&rft_galeid=A748025290&rft_wanfj_id=lyyj202303010&rfr_iscdi=true