Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)
Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared b...
Gespeichert in:
Veröffentlicht in: | Journal of forestry research 2023-06, Vol.34 (3), p.677-691 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 691 |
---|---|
container_issue | 3 |
container_start_page | 677 |
container_title | Journal of forestry research |
container_volume | 34 |
creator | Yang, Xiaoming Xu, Qi Le, Linlin Zhou, Tingting Yu, Wanwen Wang, Guibin Fu, Fang-Fang Cao, Fuliang |
description | Gingko biloba
accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase (
FLS
) and UDP-glucuronosyl-transferase (
UGT
) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability. |
doi_str_mv | 10.1007/s11676-022-01519-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lyyj202303010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748025290</galeid><wanfj_id>lyyj202303010</wanfj_id><sourcerecordid>lyyj202303010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</originalsourceid><addsrcrecordid>eNp9klGL1DAQx4soeJ5-AZ8CIpxwXSdJ2zSPx3LeCQu-KPgW0nTazZoma9K9Y7-En9mslTsUkTxMCL___CczUxSvKawogHifKG1EUwJjJdCaylI-Kc6olLyEBsTTfM9U2TTs6_PiRUo7gLrivDorfqzDtNdRz_YOydamObgwHi_JHLVPJtr9HCa8JNr3ZMJZd8HZGck-hsE660dy8FHfoSPzFkkXw70_PU5ottrbNCUSBmK0c5b0GLNFT4YYJjJa_20M5OJmiZ11odNks3r3sng2aJfw1e94Xnz5cP15fVtuPt18XF9tSlNVci65pA3rgSLQ1mDb9SiwazreVQYr0YHkTFfQ1oxpQYWopKCyFx2vKQVTacHPi7dL3nvtB-1HtQuH6LOjcsfjjgHjwIFC5i4WLv_4-wHTrCabDDqnPYZDUpzWnMqWiSajb_5CH3KyFiTNc4H6kRq1Q2X9EHKnzSmpuhJVC6xm8mS7-geVT4-TNcFj7j7-KWCLwMSQUsRB7aOddDwqCuo0e7VsiMobon5tiJJZxBdRyrAfMT5W_B_VTyrdvNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101505</pqid></control><display><type>article</type><title>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Xiaoming ; Xu, Qi ; Le, Linlin ; Zhou, Tingting ; Yu, Wanwen ; Wang, Guibin ; Fu, Fang-Fang ; Cao, Fuliang</creator><creatorcontrib>Yang, Xiaoming ; Xu, Qi ; Le, Linlin ; Zhou, Tingting ; Yu, Wanwen ; Wang, Guibin ; Fu, Fang-Fang ; Cao, Fuliang</creatorcontrib><description>Gingko biloba
accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase (
FLS
) and UDP-glucuronosyl-transferase (
UGT
) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.</description><identifier>ISSN: 1007-662X</identifier><identifier>EISSN: 1993-0607</identifier><identifier>DOI: 10.1007/s11676-022-01519-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Biomedical and Life Sciences ; Biosynthesis ; Browning ; Callus ; Cell death ; cell structures ; Cytology ; Embryos ; Flavone glycosides ; Flavonoids ; Flavonols ; Forestry ; Gene expression ; gene expression regulation ; Genes ; Ginkgo biloba ; Glycosides ; glycosylation ; Histology ; Isoflavones ; Life Sciences ; Metabolism ; Metabolites ; Original Paper ; Physiological aspects ; Plant metabolites ; Secondary metabolites ; Substrates ; transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>Journal of forestry research, 2023-06, Vol.34 (3), p.677-691</ispartof><rights>Northeast Forestry University 2022. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</citedby><cites>FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lyyj/lyyj.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11676-022-01519-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11676-022-01519-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yang, Xiaoming</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Le, Linlin</creatorcontrib><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Yu, Wanwen</creatorcontrib><creatorcontrib>Wang, Guibin</creatorcontrib><creatorcontrib>Fu, Fang-Fang</creatorcontrib><creatorcontrib>Cao, Fuliang</creatorcontrib><title>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</title><title>Journal of forestry research</title><addtitle>J. For. Res</addtitle><description>Gingko biloba
accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase (
FLS
) and UDP-glucuronosyl-transferase (
UGT
) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.</description><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Browning</subject><subject>Callus</subject><subject>Cell death</subject><subject>cell structures</subject><subject>Cytology</subject><subject>Embryos</subject><subject>Flavone glycosides</subject><subject>Flavonoids</subject><subject>Flavonols</subject><subject>Forestry</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Genes</subject><subject>Ginkgo biloba</subject><subject>Glycosides</subject><subject>glycosylation</subject><subject>Histology</subject><subject>Isoflavones</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Original Paper</subject><subject>Physiological aspects</subject><subject>Plant metabolites</subject><subject>Secondary metabolites</subject><subject>Substrates</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1007-662X</issn><issn>1993-0607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9klGL1DAQx4soeJ5-AZ8CIpxwXSdJ2zSPx3LeCQu-KPgW0nTazZoma9K9Y7-En9mslTsUkTxMCL___CczUxSvKawogHifKG1EUwJjJdCaylI-Kc6olLyEBsTTfM9U2TTs6_PiRUo7gLrivDorfqzDtNdRz_YOydamObgwHi_JHLVPJtr9HCa8JNr3ZMJZd8HZGck-hsE660dy8FHfoSPzFkkXw70_PU5ottrbNCUSBmK0c5b0GLNFT4YYJjJa_20M5OJmiZ11odNks3r3sng2aJfw1e94Xnz5cP15fVtuPt18XF9tSlNVci65pA3rgSLQ1mDb9SiwazreVQYr0YHkTFfQ1oxpQYWopKCyFx2vKQVTacHPi7dL3nvtB-1HtQuH6LOjcsfjjgHjwIFC5i4WLv_4-wHTrCabDDqnPYZDUpzWnMqWiSajb_5CH3KyFiTNc4H6kRq1Q2X9EHKnzSmpuhJVC6xm8mS7-geVT4-TNcFj7j7-KWCLwMSQUsRB7aOddDwqCuo0e7VsiMobon5tiJJZxBdRyrAfMT5W_B_VTyrdvNo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yang, Xiaoming</creator><creator>Xu, Qi</creator><creator>Le, Linlin</creator><creator>Zhou, Tingting</creator><creator>Yu, Wanwen</creator><creator>Wang, Guibin</creator><creator>Fu, Fang-Fang</creator><creator>Cao, Fuliang</creator><general>Springer Nature Singapore</general><general>Springer</general><general>Springer Nature B.V</general><general>Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037,People's Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230601</creationdate><title>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</title><author>Yang, Xiaoming ; Xu, Qi ; Le, Linlin ; Zhou, Tingting ; Yu, Wanwen ; Wang, Guibin ; Fu, Fang-Fang ; Cao, Fuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-39162d01e018ce8bde7eb6b3b4ce47b0932a408522a717749719d7b35110c4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Browning</topic><topic>Callus</topic><topic>Cell death</topic><topic>cell structures</topic><topic>Cytology</topic><topic>Embryos</topic><topic>Flavone glycosides</topic><topic>Flavonoids</topic><topic>Flavonols</topic><topic>Forestry</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Genes</topic><topic>Ginkgo biloba</topic><topic>Glycosides</topic><topic>glycosylation</topic><topic>Histology</topic><topic>Isoflavones</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Original Paper</topic><topic>Physiological aspects</topic><topic>Plant metabolites</topic><topic>Secondary metabolites</topic><topic>Substrates</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaoming</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Le, Linlin</creatorcontrib><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Yu, Wanwen</creatorcontrib><creatorcontrib>Wang, Guibin</creatorcontrib><creatorcontrib>Fu, Fang-Fang</creatorcontrib><creatorcontrib>Cao, Fuliang</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of forestry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaoming</au><au>Xu, Qi</au><au>Le, Linlin</au><au>Zhou, Tingting</au><au>Yu, Wanwen</au><au>Wang, Guibin</au><au>Fu, Fang-Fang</au><au>Cao, Fuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)</atitle><jtitle>Journal of forestry research</jtitle><stitle>J. For. Res</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><spage>677</spage><epage>691</epage><pages>677-691</pages><issn>1007-662X</issn><eissn>1993-0607</eissn><abstract>Gingko biloba
accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase (
FLS
) and UDP-glucuronosyl-transferase (
UGT
) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s11676-022-01519-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-662X |
ispartof | Journal of forestry research, 2023-06, Vol.34 (3), p.677-691 |
issn | 1007-662X 1993-0607 |
language | eng |
recordid | cdi_wanfang_journals_lyyj202303010 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biosynthesis Browning Callus Cell death cell structures Cytology Embryos Flavone glycosides Flavonoids Flavonols Forestry Gene expression gene expression regulation Genes Ginkgo biloba Glycosides glycosylation Histology Isoflavones Life Sciences Metabolism Metabolites Original Paper Physiological aspects Plant metabolites Secondary metabolites Substrates transcriptome Transcriptomes Transcriptomics |
title | Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20histology,%20transcriptome,%20and%20metabolite%20profiling%20unravel%20the%20browning%20mechanisms%20of%20calli%20derived%20from%20ginkgo%20(Ginkgo%20biloba%20L.)&rft.jtitle=Journal%20of%20forestry%20research&rft.au=Yang,%20Xiaoming&rft.date=2023-06-01&rft.volume=34&rft.issue=3&rft.spage=677&rft.epage=691&rft.pages=677-691&rft.issn=1007-662X&rft.eissn=1993-0607&rft_id=info:doi/10.1007/s11676-022-01519-9&rft_dat=%3Cwanfang_jour_proqu%3Elyyj202303010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809101505&rft_id=info:pmid/&rft_galeid=A748025290&rft_wanfj_id=lyyj202303010&rfr_iscdi=true |