Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening
Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for est...
Gespeichert in:
Veröffentlicht in: | Journal of forestry research 2018-05, Vol.29 (3), p.785-796 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 796 |
---|---|
container_issue | 3 |
container_start_page | 785 |
container_title | Journal of forestry research |
container_volume | 29 |
creator | Ren, Zhibin Du, Yunxia He, Xingyuan Pu, Ruiliang Zheng, Haifeng Hu, Haide |
description | Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km
2
in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening. |
doi_str_mv | 10.1007/s11676-017-0480-x |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lyyj201803022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717798535</galeid><wanfj_id>lyyj201803022</wanfj_id><sourcerecordid>lyyj201803022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</originalsourceid><addsrcrecordid>eNp1kVFrFDEUhQexYG39Ab4FxMepN8nMJHksRatQ8EELvoW7MzdD1tlkTGZxt7_eLFNYBE0gNzl85ybhVNVbDjccQH3InHeqq4GrGhoN9eFFdcmNkTV0oF6WfYHqrhM_XlWvc94CtI2UzWX189uMi48L7eaYcGLltFAKLDq2TxsMzMVEeWEToWOYCJkPAx3Kyoo-x5CJLZElnP2wOvzTqWFgGJ4FNiai4MN4XV04nDK9ea5X1eOnj9_vPtcPX--_3N0-1H3D5VJvlGkHgUZLZ7jZNIPrUPIBtGq5ACMaaIYiEueiBa2pJzMYwM4JVYbeyKvq_dr3NwaHYbTbuE-h3Gin43ErgGuQIETh3q3cnOKvffnlGRQgAJpOgD5TI05kfXBxSdjvfO7treJKGd3KtlA3_6DKHGjn-xjI-aL_ZeCroU8x50TOzsnvMB0tB3tKy66R2hKpPUVqD8UjVk8ubBgpnR_8f9MfF9mi7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020046208</pqid></control><display><type>article</type><title>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Ren, Zhibin ; Du, Yunxia ; He, Xingyuan ; Pu, Ruiliang ; Zheng, Haifeng ; Hu, Haide</creator><creatorcontrib>Ren, Zhibin ; Du, Yunxia ; He, Xingyuan ; Pu, Ruiliang ; Zheng, Haifeng ; Hu, Haide</creatorcontrib><description>Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km
2
in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.</description><identifier>ISSN: 1007-662X</identifier><identifier>EISSN: 1993-0607</identifier><identifier>DOI: 10.1007/s11676-017-0480-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Biomedical and Life Sciences ; Central business districts ; Earth resources technology satellites ; Forest management ; Forestry ; Forests ; Greening ; Image acquisition ; Landsat ; Landsat satellites ; Leaf area ; Leaf area index ; Leaves ; Life Sciences ; Original Paper ; Plant growth ; Prediction models ; Remote sensing ; Satellite imagery ; Surveys ; Sustainable living ; Urban areas ; Urban forests ; Urbanization</subject><ispartof>Journal of forestry research, 2018-05, Vol.29 (3), p.785-796</ispartof><rights>Northeast Forestry University and Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</citedby><cites>FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lyyj/lyyj.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11676-017-0480-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11676-017-0480-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ren, Zhibin</creatorcontrib><creatorcontrib>Du, Yunxia</creatorcontrib><creatorcontrib>He, Xingyuan</creatorcontrib><creatorcontrib>Pu, Ruiliang</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Hu, Haide</creatorcontrib><title>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</title><title>Journal of forestry research</title><addtitle>J. For. Res</addtitle><description>Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km
2
in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.</description><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Central business districts</subject><subject>Earth resources technology satellites</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Forests</subject><subject>Greening</subject><subject>Image acquisition</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Plant growth</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Surveys</subject><subject>Sustainable living</subject><subject>Urban areas</subject><subject>Urban forests</subject><subject>Urbanization</subject><issn>1007-662X</issn><issn>1993-0607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kVFrFDEUhQexYG39Ab4FxMepN8nMJHksRatQ8EELvoW7MzdD1tlkTGZxt7_eLFNYBE0gNzl85ybhVNVbDjccQH3InHeqq4GrGhoN9eFFdcmNkTV0oF6WfYHqrhM_XlWvc94CtI2UzWX189uMi48L7eaYcGLltFAKLDq2TxsMzMVEeWEToWOYCJkPAx3Kyoo-x5CJLZElnP2wOvzTqWFgGJ4FNiai4MN4XV04nDK9ea5X1eOnj9_vPtcPX--_3N0-1H3D5VJvlGkHgUZLZ7jZNIPrUPIBtGq5ACMaaIYiEueiBa2pJzMYwM4JVYbeyKvq_dr3NwaHYbTbuE-h3Gin43ErgGuQIETh3q3cnOKvffnlGRQgAJpOgD5TI05kfXBxSdjvfO7treJKGd3KtlA3_6DKHGjn-xjI-aL_ZeCroU8x50TOzsnvMB0tB3tKy66R2hKpPUVqD8UjVk8ubBgpnR_8f9MfF9mi7w</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Ren, Zhibin</creator><creator>Du, Yunxia</creator><creator>He, Xingyuan</creator><creator>Pu, Ruiliang</creator><creator>Zheng, Haifeng</creator><creator>Hu, Haide</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>School of Geosciences, University of South Florida, 4202 E.Fowler Ave., NES 107, Tampa, FL 33620, USA%Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, People's Republic of China%School of Geosciences, University of South Florida, 4202 E.Fowler Ave., NES 107, Tampa, FL 33620, USA%Department of Architecture and Design, Changchun Institute of Technology, Changchun 130102, Jilin, People's Republic of China</general><general>Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, People's Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180501</creationdate><title>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</title><author>Ren, Zhibin ; Du, Yunxia ; He, Xingyuan ; Pu, Ruiliang ; Zheng, Haifeng ; Hu, Haide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Central business districts</topic><topic>Earth resources technology satellites</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Forests</topic><topic>Greening</topic><topic>Image acquisition</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Plant growth</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Surveys</topic><topic>Sustainable living</topic><topic>Urban areas</topic><topic>Urban forests</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhibin</creatorcontrib><creatorcontrib>Du, Yunxia</creatorcontrib><creatorcontrib>He, Xingyuan</creatorcontrib><creatorcontrib>Pu, Ruiliang</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Hu, Haide</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of forestry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhibin</au><au>Du, Yunxia</au><au>He, Xingyuan</au><au>Pu, Ruiliang</au><au>Zheng, Haifeng</au><au>Hu, Haide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</atitle><jtitle>Journal of forestry research</jtitle><stitle>J. For. Res</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>785</spage><epage>796</epage><pages>785-796</pages><issn>1007-662X</issn><eissn>1993-0607</eissn><abstract>Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km
2
in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11676-017-0480-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-662X |
ispartof | Journal of forestry research, 2018-05, Vol.29 (3), p.785-796 |
issn | 1007-662X 1993-0607 |
language | eng |
recordid | cdi_wanfang_journals_lyyj201803022 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Analysis Biomedical and Life Sciences Central business districts Earth resources technology satellites Forest management Forestry Forests Greening Image acquisition Landsat Landsat satellites Leaf area Leaf area index Leaves Life Sciences Original Paper Plant growth Prediction models Remote sensing Satellite imagery Surveys Sustainable living Urban areas Urban forests Urbanization |
title | Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20pattern%20of%20urban%20forest%20leaf%20area%20index%20in%20response%20to%20rapid%20urbanization%20and%20urban%20greening&rft.jtitle=Journal%20of%20forestry%20research&rft.au=Ren,%20Zhibin&rft.date=2018-05-01&rft.volume=29&rft.issue=3&rft.spage=785&rft.epage=796&rft.pages=785-796&rft.issn=1007-662X&rft.eissn=1993-0607&rft_id=info:doi/10.1007/s11676-017-0480-x&rft_dat=%3Cwanfang_jour_proqu%3Elyyj201803022%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020046208&rft_id=info:pmid/&rft_galeid=A717798535&rft_wanfj_id=lyyj201803022&rfr_iscdi=true |