Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening

Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forestry research 2018-05, Vol.29 (3), p.785-796
Hauptverfasser: Ren, Zhibin, Du, Yunxia, He, Xingyuan, Pu, Ruiliang, Zheng, Haifeng, Hu, Haide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 3
container_start_page 785
container_title Journal of forestry research
container_volume 29
creator Ren, Zhibin
Du, Yunxia
He, Xingyuan
Pu, Ruiliang
Zheng, Haifeng
Hu, Haide
description Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km 2 in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.
doi_str_mv 10.1007/s11676-017-0480-x
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lyyj201803022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717798535</galeid><wanfj_id>lyyj201803022</wanfj_id><sourcerecordid>lyyj201803022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</originalsourceid><addsrcrecordid>eNp1kVFrFDEUhQexYG39Ab4FxMepN8nMJHksRatQ8EELvoW7MzdD1tlkTGZxt7_eLFNYBE0gNzl85ybhVNVbDjccQH3InHeqq4GrGhoN9eFFdcmNkTV0oF6WfYHqrhM_XlWvc94CtI2UzWX189uMi48L7eaYcGLltFAKLDq2TxsMzMVEeWEToWOYCJkPAx3Kyoo-x5CJLZElnP2wOvzTqWFgGJ4FNiai4MN4XV04nDK9ea5X1eOnj9_vPtcPX--_3N0-1H3D5VJvlGkHgUZLZ7jZNIPrUPIBtGq5ACMaaIYiEueiBa2pJzMYwM4JVYbeyKvq_dr3NwaHYbTbuE-h3Gin43ErgGuQIETh3q3cnOKvffnlGRQgAJpOgD5TI05kfXBxSdjvfO7treJKGd3KtlA3_6DKHGjn-xjI-aL_ZeCroU8x50TOzsnvMB0tB3tKy66R2hKpPUVqD8UjVk8ubBgpnR_8f9MfF9mi7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020046208</pqid></control><display><type>article</type><title>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Ren, Zhibin ; Du, Yunxia ; He, Xingyuan ; Pu, Ruiliang ; Zheng, Haifeng ; Hu, Haide</creator><creatorcontrib>Ren, Zhibin ; Du, Yunxia ; He, Xingyuan ; Pu, Ruiliang ; Zheng, Haifeng ; Hu, Haide</creatorcontrib><description>Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km 2 in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.</description><identifier>ISSN: 1007-662X</identifier><identifier>EISSN: 1993-0607</identifier><identifier>DOI: 10.1007/s11676-017-0480-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Biomedical and Life Sciences ; Central business districts ; Earth resources technology satellites ; Forest management ; Forestry ; Forests ; Greening ; Image acquisition ; Landsat ; Landsat satellites ; Leaf area ; Leaf area index ; Leaves ; Life Sciences ; Original Paper ; Plant growth ; Prediction models ; Remote sensing ; Satellite imagery ; Surveys ; Sustainable living ; Urban areas ; Urban forests ; Urbanization</subject><ispartof>Journal of forestry research, 2018-05, Vol.29 (3), p.785-796</ispartof><rights>Northeast Forestry University and Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</citedby><cites>FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lyyj/lyyj.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11676-017-0480-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11676-017-0480-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ren, Zhibin</creatorcontrib><creatorcontrib>Du, Yunxia</creatorcontrib><creatorcontrib>He, Xingyuan</creatorcontrib><creatorcontrib>Pu, Ruiliang</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Hu, Haide</creatorcontrib><title>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</title><title>Journal of forestry research</title><addtitle>J. For. Res</addtitle><description>Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km 2 in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.</description><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Central business districts</subject><subject>Earth resources technology satellites</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Forests</subject><subject>Greening</subject><subject>Image acquisition</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Plant growth</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Surveys</subject><subject>Sustainable living</subject><subject>Urban areas</subject><subject>Urban forests</subject><subject>Urbanization</subject><issn>1007-662X</issn><issn>1993-0607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kVFrFDEUhQexYG39Ab4FxMepN8nMJHksRatQ8EELvoW7MzdD1tlkTGZxt7_eLFNYBE0gNzl85ybhVNVbDjccQH3InHeqq4GrGhoN9eFFdcmNkTV0oF6WfYHqrhM_XlWvc94CtI2UzWX189uMi48L7eaYcGLltFAKLDq2TxsMzMVEeWEToWOYCJkPAx3Kyoo-x5CJLZElnP2wOvzTqWFgGJ4FNiai4MN4XV04nDK9ea5X1eOnj9_vPtcPX--_3N0-1H3D5VJvlGkHgUZLZ7jZNIPrUPIBtGq5ACMaaIYiEueiBa2pJzMYwM4JVYbeyKvq_dr3NwaHYbTbuE-h3Gin43ErgGuQIETh3q3cnOKvffnlGRQgAJpOgD5TI05kfXBxSdjvfO7treJKGd3KtlA3_6DKHGjn-xjI-aL_ZeCroU8x50TOzsnvMB0tB3tKy66R2hKpPUVqD8UjVk8ubBgpnR_8f9MfF9mi7w</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Ren, Zhibin</creator><creator>Du, Yunxia</creator><creator>He, Xingyuan</creator><creator>Pu, Ruiliang</creator><creator>Zheng, Haifeng</creator><creator>Hu, Haide</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>School of Geosciences, University of South Florida, 4202 E.Fowler Ave., NES 107, Tampa, FL 33620, USA%Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, People's Republic of China%School of Geosciences, University of South Florida, 4202 E.Fowler Ave., NES 107, Tampa, FL 33620, USA%Department of Architecture and Design, Changchun Institute of Technology, Changchun 130102, Jilin, People's Republic of China</general><general>Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, People's Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180501</creationdate><title>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</title><author>Ren, Zhibin ; Du, Yunxia ; He, Xingyuan ; Pu, Ruiliang ; Zheng, Haifeng ; Hu, Haide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b795d2a983f919b4df6a31d087512092404d4dfe1125088ece9d90a6f277778b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Central business districts</topic><topic>Earth resources technology satellites</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Forests</topic><topic>Greening</topic><topic>Image acquisition</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Plant growth</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Surveys</topic><topic>Sustainable living</topic><topic>Urban areas</topic><topic>Urban forests</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhibin</creatorcontrib><creatorcontrib>Du, Yunxia</creatorcontrib><creatorcontrib>He, Xingyuan</creatorcontrib><creatorcontrib>Pu, Ruiliang</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Hu, Haide</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of forestry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhibin</au><au>Du, Yunxia</au><au>He, Xingyuan</au><au>Pu, Ruiliang</au><au>Zheng, Haifeng</au><au>Hu, Haide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening</atitle><jtitle>Journal of forestry research</jtitle><stitle>J. For. Res</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>785</spage><epage>796</epage><pages>785-796</pages><issn>1007-662X</issn><eissn>1993-0607</eissn><abstract>Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index (LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM (thematic mapper) images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model. Our results show that normalized differential vegetation index (NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization. Leaf area for the study area was 216.4, 145.2 and 173.7 km 2 in the years 1997, 2004 and 2010, respectively. Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11676-017-0480-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-662X
ispartof Journal of forestry research, 2018-05, Vol.29 (3), p.785-796
issn 1007-662X
1993-0607
language eng
recordid cdi_wanfang_journals_lyyj201803022
source SpringerLink Journals; Alma/SFX Local Collection
subjects Analysis
Biomedical and Life Sciences
Central business districts
Earth resources technology satellites
Forest management
Forestry
Forests
Greening
Image acquisition
Landsat
Landsat satellites
Leaf area
Leaf area index
Leaves
Life Sciences
Original Paper
Plant growth
Prediction models
Remote sensing
Satellite imagery
Surveys
Sustainable living
Urban areas
Urban forests
Urbanization
title Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20pattern%20of%20urban%20forest%20leaf%20area%20index%20in%20response%20to%20rapid%20urbanization%20and%20urban%20greening&rft.jtitle=Journal%20of%20forestry%20research&rft.au=Ren,%20Zhibin&rft.date=2018-05-01&rft.volume=29&rft.issue=3&rft.spage=785&rft.epage=796&rft.pages=785-796&rft.issn=1007-662X&rft.eissn=1993-0607&rft_id=info:doi/10.1007/s11676-017-0480-x&rft_dat=%3Cwanfang_jour_proqu%3Elyyj201803022%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020046208&rft_id=info:pmid/&rft_galeid=A717798535&rft_wanfj_id=lyyj201803022&rfr_iscdi=true