一类特殊等差数列中的素数个数问题
欧几里得在古希腊时期用反证法证明了在自然数序列中存在无穷多个素数,本文是该命题的一种推广.注意到自然数序列是一个首项为1公差为1的等差数列,本文证明把公差1换做任意一个正整数,保持首项为1不变,则得到的等差数列中仍然存在无穷多个素数....
Gespeichert in:
Veröffentlicht in: | 洛阳师范学院学报 2009, Vol.28 (5), p.20-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!