Euler数的一个特征
设E2n为Euler数以及矩阵E2n(t)定义为En(t)=e(l+i+j)0≤i,j≤n ,这里en={En,若n为偶数;0,若n为奇数,我们得到了E2n(t)的一个一般分解形式;进而得到了detE2n(0),detE2n(1)与detE2n(2)的计算公式。
Gespeichert in:
Veröffentlicht in: | 洛阳师范学院学报 2003, Vol.22 (2), p.5-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2 |
container_start_page | 5 |
container_title | 洛阳师范学院学报 |
container_volume | 22 |
creator | 张之正 |
description | 设E2n为Euler数以及矩阵E2n(t)定义为En(t)=e(l+i+j)0≤i,j≤n ,这里en={En,若n为偶数;0,若n为奇数,我们得到了E2n(t)的一个一般分解形式;进而得到了detE2n(0),detE2n(1)与detE2n(2)的计算公式。 |
doi_str_mv | 10.3969/j.issn.1009-4970.2003.02.001 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_lysfxyxb200302001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7805656</cqvip_id><wanfj_id>lysfxyxb200302001</wanfj_id><sourcerecordid>lysfxyxb200302001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601-4b034f51346746cca2adc97af943fed1004111ef2cdbb8c0f860ec22c81fd48c3</originalsourceid><addsrcrecordid>eNo9j79KA0EYxLdQMMTU1oKNxa3f_rm93VJC1EDAJv2x-91uvHhcMEsw6RRsfAAbH8HKMjY-TTSv4UrEZgaGHzMMIScMqDDKnE1pHWNLGYDJpCmAcgBBgVMAtkc6__kB6cVYO0ixlAagQ44Gi8bPv1_et69Pm_XDZv22ff74-nw8JPvBNtH3_rxLxheDcf8qG11fDvvnowwVsEw6EDLkTEhVSIVoua3QFDYYKYKv0q5kjPnAsXJOIwStwCPnqFmopEbRJae72nvbBttOyulsMW_TYNmsYliulu73CSRhiT3esXgzayd3daKdxdtQN74sNOQqV-IHfbdRvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Euler数的一个特征</title><source>National Center for Philosophy and Social Science Documentation (China)</source><creator>张之正</creator><creatorcontrib>张之正</creatorcontrib><description>设E2n为Euler数以及矩阵E2n(t)定义为En(t)=e(l+i+j)0≤i,j≤n ,这里en={En,若n为偶数;0,若n为奇数,我们得到了E2n(t)的一个一般分解形式;进而得到了detE2n(0),detE2n(1)与detE2n(2)的计算公式。</description><identifier>ISSN: 1009-4970</identifier><identifier>DOI: 10.3969/j.issn.1009-4970.2003.02.001</identifier><language>chi</language><publisher>南京大学数学系,江苏南京,210093</publisher><subject>Euler数 ; Hankel矩阵 ; 行列式</subject><ispartof>洛阳师范学院学报, 2003, Vol.22 (2), p.5-8</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83894A/83894A.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>张之正</creatorcontrib><title>Euler数的一个特征</title><title>洛阳师范学院学报</title><addtitle>Journal of Luoyang Teachers College</addtitle><description>设E2n为Euler数以及矩阵E2n(t)定义为En(t)=e(l+i+j)0≤i,j≤n ,这里en={En,若n为偶数;0,若n为奇数,我们得到了E2n(t)的一个一般分解形式;进而得到了detE2n(0),detE2n(1)与detE2n(2)的计算公式。</description><subject>Euler数</subject><subject>Hankel矩阵</subject><subject>行列式</subject><issn>1009-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo9j79KA0EYxLdQMMTU1oKNxa3f_rm93VJC1EDAJv2x-91uvHhcMEsw6RRsfAAbH8HKMjY-TTSv4UrEZgaGHzMMIScMqDDKnE1pHWNLGYDJpCmAcgBBgVMAtkc6__kB6cVYO0ixlAagQ44Gi8bPv1_et69Pm_XDZv22ff74-nw8JPvBNtH3_rxLxheDcf8qG11fDvvnowwVsEw6EDLkTEhVSIVoua3QFDYYKYKv0q5kjPnAsXJOIwStwCPnqFmopEbRJae72nvbBttOyulsMW_TYNmsYliulu73CSRhiT3esXgzayd3daKdxdtQN74sNOQqV-IHfbdRvg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>张之正</creator><general>南京大学数学系,江苏南京,210093</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2003</creationdate><title>Euler数的一个特征</title><author>张之正</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601-4b034f51346746cca2adc97af943fed1004111ef2cdbb8c0f860ec22c81fd48c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2003</creationdate><topic>Euler数</topic><topic>Hankel矩阵</topic><topic>行列式</topic><toplevel>online_resources</toplevel><creatorcontrib>张之正</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>洛阳师范学院学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张之正</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euler数的一个特征</atitle><jtitle>洛阳师范学院学报</jtitle><addtitle>Journal of Luoyang Teachers College</addtitle><date>2003</date><risdate>2003</risdate><volume>22</volume><issue>2</issue><spage>5</spage><epage>8</epage><pages>5-8</pages><issn>1009-4970</issn><abstract>设E2n为Euler数以及矩阵E2n(t)定义为En(t)=e(l+i+j)0≤i,j≤n ,这里en={En,若n为偶数;0,若n为奇数,我们得到了E2n(t)的一个一般分解形式;进而得到了detE2n(0),detE2n(1)与detE2n(2)的计算公式。</abstract><pub>南京大学数学系,江苏南京,210093</pub><doi>10.3969/j.issn.1009-4970.2003.02.001</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-4970 |
ispartof | 洛阳师范学院学报, 2003, Vol.22 (2), p.5-8 |
issn | 1009-4970 |
language | chi |
recordid | cdi_wanfang_journals_lysfxyxb200302001 |
source | National Center for Philosophy and Social Science Documentation (China) |
subjects | Euler数 Hankel矩阵 行列式 |
title | Euler数的一个特征 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euler%E6%95%B0%E7%9A%84%E4%B8%80%E4%B8%AA%E7%89%B9%E5%BE%81&rft.jtitle=%E6%B4%9B%E9%98%B3%E5%B8%88%E8%8C%83%E5%AD%A6%E9%99%A2%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E4%B9%8B%E6%AD%A3&rft.date=2003&rft.volume=22&rft.issue=2&rft.spage=5&rft.epage=8&rft.pages=5-8&rft.issn=1009-4970&rft_id=info:doi/10.3969/j.issn.1009-4970.2003.02.001&rft_dat=%3Cwanfang_jour_chong%3Elysfxyxb200302001%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7805656&rft_wanfj_id=lysfxyxb200302001&rfr_iscdi=true |