基于深度学习的森林可燃物含水率反演技术?
S762; [目的]探究基于卫星遥感数据的森林可燃物含水率反演,比较深度学习模型与传统机器学习模型的精度,并探索一种解决冠层遮挡问题的方案,为全国建立森林可燃物含水率数据库提供理论依据.[方法]以河北省张家口市崇礼区为研究区,基于实地测量数据,针对传统机器学习模型误差较大的问题,建立深度学习中的多层感知机(MLP)模型,研究光谱反射率与森林冠层植被和地表枯落物含水率之间的关系,并与传统机器学习中的支持向量回归(SVR)模型进行精度对比.选取与实地考察时间同季度的哨兵遥感数据,以光谱反射率、光谱水分指数等遥感估测法中常用变量作为反演森林冠层植被和地表枯落物含水率的影响因子,结合实地考察数据进行模...
Gespeichert in:
Veröffentlicht in: | 林业科学 2022-10, Vol.58 (10), p.47-58 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!