Improving the off-resonance energy harvesting performance using dynamic magnetic preloading

Piezoelectric stack transducers in d 33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d 31 mode piezoelectric harvesters. However, multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2020-06, Vol.36 (3), p.624-634
Hauptverfasser: Qian, Feng, Zhou, Shengxi, Zuo, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 3
container_start_page 624
container_title Acta mechanica Sinica
container_volume 36
creator Qian, Feng
Zhou, Shengxi
Zuo, Lei
description Piezoelectric stack transducers in d 33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d 31 mode piezoelectric harvesters. However, multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations. This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output. The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame, a proof mass, and two magnets configured in attraction. The static force–displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction. An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads. Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results. The performance of the system is examined and compared with that of the harvester without magnetic pre-loading. The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated. Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s 2 , far below the resonance at 243 Hz
doi_str_mv 10.1007/s10409-020-00929-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lxxb_e202003007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>lxxb_e202003007</wanfj_id><sourcerecordid>lxxb_e202003007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c0aa11f04ae68d221227e33523f6463a3c5544bf512b265a3d024eb6bf4686143</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMTAZ7mzHSUZU8adSJRaYGCwntdNWjRPstLTfHrdB6sZ01t3v3vk9Qm4RHhAgewwIAgoKDChAwQoqzsgIJQrKEeU5GUEqM5plmF-SqxBWAFxihiPyNW06326Xrk76hUlaa6k3oXXaVSYxzvh6nyy035rQH5jOeNv65jjdhENnvne6WVZJo2tn-vjovFm3eh5n1-TC6nUwN391TD5fnj8mb3T2_jqdPM1oxVPsaQVaI1oQ2sh8zhgylhnOU8atFJJrXqWpEKVNkZVMpprPgQlTytIKmUeLfEzuB90f7ax2tVq1G-_iRbXe7UplWIwFeIwpkncDGT1_b6KnE8oEExhvF3mk2EBVvg3BG6s6v2y03ysEdYhbDXGrqKuOcavDJ_iwFCLsauNP0v9s_QJDiYJV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424121298</pqid></control><display><type>article</type><title>Improving the off-resonance energy harvesting performance using dynamic magnetic preloading</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qian, Feng ; Zhou, Shengxi ; Zuo, Lei</creator><creatorcontrib>Qian, Feng ; Zhou, Shengxi ; Zuo, Lei</creatorcontrib><description>Piezoelectric stack transducers in d 33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d 31 mode piezoelectric harvesters. However, multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations. This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output. The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame, a proof mass, and two magnets configured in attraction. The static force–displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction. An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads. Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results. The performance of the system is examined and compared with that of the harvester without magnetic pre-loading. The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated. Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s 2 , far below the resonance at 243 Hz</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-020-00929-4</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Classical and Continuum Physics ; Computational Intelligence ; Dynamic models ; Energy conversion efficiency ; Energy harvesting ; Engineering ; Engineering Fluid Dynamics ; Exact solutions ; Excitation ; Harmonic balance method ; Harvesters ; Magnets ; Parameter identification ; Piezoelectricity ; Research Paper ; Resonance ; Stiffness ; Theoretical and Applied Mechanics ; Transducers</subject><ispartof>Acta mechanica Sinica, 2020-06, Vol.36 (3), p.624-634</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c0aa11f04ae68d221227e33523f6463a3c5544bf512b265a3d024eb6bf4686143</citedby><cites>FETCH-LOGICAL-c351t-c0aa11f04ae68d221227e33523f6463a3c5544bf512b265a3d024eb6bf4686143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lxxb-e/lxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-020-00929-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-020-00929-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Zhou, Shengxi</creatorcontrib><creatorcontrib>Zuo, Lei</creatorcontrib><title>Improving the off-resonance energy harvesting performance using dynamic magnetic preloading</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>Piezoelectric stack transducers in d 33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d 31 mode piezoelectric harvesters. However, multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations. This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output. The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame, a proof mass, and two magnets configured in attraction. The static force–displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction. An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads. Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results. The performance of the system is examined and compared with that of the harvester without magnetic pre-loading. The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated. Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s 2 , far below the resonance at 243 Hz</description><subject>Classical and Continuum Physics</subject><subject>Computational Intelligence</subject><subject>Dynamic models</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact solutions</subject><subject>Excitation</subject><subject>Harmonic balance method</subject><subject>Harvesters</subject><subject>Magnets</subject><subject>Parameter identification</subject><subject>Piezoelectricity</subject><subject>Research Paper</subject><subject>Resonance</subject><subject>Stiffness</subject><subject>Theoretical and Applied Mechanics</subject><subject>Transducers</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMTAZ7mzHSUZU8adSJRaYGCwntdNWjRPstLTfHrdB6sZ01t3v3vk9Qm4RHhAgewwIAgoKDChAwQoqzsgIJQrKEeU5GUEqM5plmF-SqxBWAFxihiPyNW06326Xrk76hUlaa6k3oXXaVSYxzvh6nyy035rQH5jOeNv65jjdhENnvne6WVZJo2tn-vjovFm3eh5n1-TC6nUwN391TD5fnj8mb3T2_jqdPM1oxVPsaQVaI1oQ2sh8zhgylhnOU8atFJJrXqWpEKVNkZVMpprPgQlTytIKmUeLfEzuB90f7ax2tVq1G-_iRbXe7UplWIwFeIwpkncDGT1_b6KnE8oEExhvF3mk2EBVvg3BG6s6v2y03ysEdYhbDXGrqKuOcavDJ_iwFCLsauNP0v9s_QJDiYJV</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Qian, Feng</creator><creator>Zhou, Shengxi</creator><creator>Zuo, Lei</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><general>School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China</general><general>Department of Mechanical Engineering, Virginia Tech,Blacksburg, VA 24061, USA%Department of Mechanical Engineering, Virginia Tech,Blacksburg, VA 24061, USA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200601</creationdate><title>Improving the off-resonance energy harvesting performance using dynamic magnetic preloading</title><author>Qian, Feng ; Zhou, Shengxi ; Zuo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c0aa11f04ae68d221227e33523f6463a3c5544bf512b265a3d024eb6bf4686143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Intelligence</topic><topic>Dynamic models</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact solutions</topic><topic>Excitation</topic><topic>Harmonic balance method</topic><topic>Harvesters</topic><topic>Magnets</topic><topic>Parameter identification</topic><topic>Piezoelectricity</topic><topic>Research Paper</topic><topic>Resonance</topic><topic>Stiffness</topic><topic>Theoretical and Applied Mechanics</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Zhou, Shengxi</creatorcontrib><creatorcontrib>Zuo, Lei</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Feng</au><au>Zhou, Shengxi</au><au>Zuo, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the off-resonance energy harvesting performance using dynamic magnetic preloading</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>624</spage><epage>634</epage><pages>624-634</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>Piezoelectric stack transducers in d 33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d 31 mode piezoelectric harvesters. However, multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations. This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output. The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame, a proof mass, and two magnets configured in attraction. The static force–displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction. An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads. Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results. The performance of the system is examined and compared with that of the harvester without magnetic pre-loading. The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated. Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s 2 , far below the resonance at 243 Hz</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-020-00929-4</doi><tpages>11</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0567-7718
ispartof Acta mechanica Sinica, 2020-06, Vol.36 (3), p.624-634
issn 0567-7718
1614-3116
language eng
recordid cdi_wanfang_journals_lxxb_e202003007
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Computational Intelligence
Dynamic models
Energy conversion efficiency
Energy harvesting
Engineering
Engineering Fluid Dynamics
Exact solutions
Excitation
Harmonic balance method
Harvesters
Magnets
Parameter identification
Piezoelectricity
Research Paper
Resonance
Stiffness
Theoretical and Applied Mechanics
Transducers
title Improving the off-resonance energy harvesting performance using dynamic magnetic preloading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20off-resonance%20energy%20harvesting%20performance%20using%20dynamic%20magnetic%20preloading&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Qian,%20Feng&rft.date=2020-06-01&rft.volume=36&rft.issue=3&rft.spage=624&rft.epage=634&rft.pages=624-634&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-020-00929-4&rft_dat=%3Cwanfang_jour_proqu%3Elxxb_e202003007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424121298&rft_id=info:pmid/&rft_wanfj_id=lxxb_e202003007&rfr_iscdi=true