Transient growth in turbulent particle-laden channel flow

Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work. The problem is formulated in the framework of a Eulerian–Eulerian approach, employing two-way coupling between fine particles and fluid flow. The model is first validated in lamina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2020-02, Vol.36 (1), p.1-11
Hauptverfasser: Song, Yang, Xu, Chunxiao, Huang, Weixi, Wang, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Acta mechanica Sinica
container_volume 36
creator Song, Yang
Xu, Chunxiao
Huang, Weixi
Wang, Lili
description Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work. The problem is formulated in the framework of a Eulerian–Eulerian approach, employing two-way coupling between fine particles and fluid flow. The model is first validated in laminar cases, after which the transient growth of coherent perturbations in turbulent channel flow is investigated, where the mean particle concentration distribution is obtained by direct numerical simulation. It is shown that the optimal small-scale structures for particles are streamwise streaks just below the optimal streamwise velocity streaks, as was previously found in numerical simulations of particle-laden channel flow. This indicates that the optimal growth of perturbations is a dominant mechanism for the distribution of particles in the near-wall region. The current study also considers the transient growth of small- and large-scale perturbations at relatively high Reynolds numbers, which reveals that the optimal large-scale structures for particles are in the near-wall region while the optimal large-scale structures for fluid enter the outer region.
doi_str_mv 10.1007/s10409-019-00902-w
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lxxb_e202001002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>lxxb_e202001002</wanfj_id><sourcerecordid>lxxb_e202001002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-8e94a506bfd3ce15f75d026b5932af685481ff3166c38b0e6fab9fa8fc645743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FD56iM0mTNEdZ_IIFL3sPaTfZ7VLTNWnp-u_tWmFvHoaB4XnfgYeQW4QHBFCPCSEHTQHHAQ2MDmdkhhJzyhHlOZmBkIoqhcUluUppB8AlKpwRvYo2pNqFLtvEdui2WR2yro9l3xxvexu7umocbezahaza2hBck_mmHa7JhbdNcjd_e05WL8-rxRtdfry-L56WtOJadLRwOrcCZOnXvHIovBJrYLIUmjPrZSHyAr3nKGXFixKc9LbU3ha-krlQOZ-T-6l2sMHbsDG7to9hfGiaw6E0jgEDGB2wkbybyH1sv3qXuhPKuFRa5Ewf-9hEVbFNKTpv9rH-tPHbIJijSzO5NKNL8-vSDGOIT6E0wmHj4qn6n9QPorJ2pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2367954294</pqid></control><display><type>article</type><title>Transient growth in turbulent particle-laden channel flow</title><source>SpringerNature Journals</source><creator>Song, Yang ; Xu, Chunxiao ; Huang, Weixi ; Wang, Lili</creator><creatorcontrib>Song, Yang ; Xu, Chunxiao ; Huang, Weixi ; Wang, Lili</creatorcontrib><description>Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work. The problem is formulated in the framework of a Eulerian–Eulerian approach, employing two-way coupling between fine particles and fluid flow. The model is first validated in laminar cases, after which the transient growth of coherent perturbations in turbulent channel flow is investigated, where the mean particle concentration distribution is obtained by direct numerical simulation. It is shown that the optimal small-scale structures for particles are streamwise streaks just below the optimal streamwise velocity streaks, as was previously found in numerical simulations of particle-laden channel flow. This indicates that the optimal growth of perturbations is a dominant mechanism for the distribution of particles in the near-wall region. The current study also considers the transient growth of small- and large-scale perturbations at relatively high Reynolds numbers, which reveals that the optimal large-scale structures for particles are in the near-wall region while the optimal large-scale structures for fluid enter the outer region.</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-019-00902-w</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Channel flow ; Classical and Continuum Physics ; Computational fluid dynamics ; Computational Intelligence ; Computer simulation ; Direct numerical simulation ; Engineering ; Engineering Fluid Dynamics ; Fluid flow ; Mathematical models ; Research Paper ; Theoretical and Applied Mechanics ; Turbulent flow</subject><ispartof>Acta mechanica Sinica, 2020-02, Vol.36 (1), p.1-11</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-8e94a506bfd3ce15f75d026b5932af685481ff3166c38b0e6fab9fa8fc645743</citedby><cites>FETCH-LOGICAL-c395t-8e94a506bfd3ce15f75d026b5932af685481ff3166c38b0e6fab9fa8fc645743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lxxb-e/lxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-019-00902-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-019-00902-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><title>Transient growth in turbulent particle-laden channel flow</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work. The problem is formulated in the framework of a Eulerian–Eulerian approach, employing two-way coupling between fine particles and fluid flow. The model is first validated in laminar cases, after which the transient growth of coherent perturbations in turbulent channel flow is investigated, where the mean particle concentration distribution is obtained by direct numerical simulation. It is shown that the optimal small-scale structures for particles are streamwise streaks just below the optimal streamwise velocity streaks, as was previously found in numerical simulations of particle-laden channel flow. This indicates that the optimal growth of perturbations is a dominant mechanism for the distribution of particles in the near-wall region. The current study also considers the transient growth of small- and large-scale perturbations at relatively high Reynolds numbers, which reveals that the optimal large-scale structures for particles are in the near-wall region while the optimal large-scale structures for fluid enter the outer region.</description><subject>Channel flow</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Direct numerical simulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbulent flow</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FD56iM0mTNEdZ_IIFL3sPaTfZ7VLTNWnp-u_tWmFvHoaB4XnfgYeQW4QHBFCPCSEHTQHHAQ2MDmdkhhJzyhHlOZmBkIoqhcUluUppB8AlKpwRvYo2pNqFLtvEdui2WR2yro9l3xxvexu7umocbezahaza2hBck_mmHa7JhbdNcjd_e05WL8-rxRtdfry-L56WtOJadLRwOrcCZOnXvHIovBJrYLIUmjPrZSHyAr3nKGXFixKc9LbU3ha-krlQOZ-T-6l2sMHbsDG7to9hfGiaw6E0jgEDGB2wkbybyH1sv3qXuhPKuFRa5Ewf-9hEVbFNKTpv9rH-tPHbIJijSzO5NKNL8-vSDGOIT6E0wmHj4qn6n9QPorJ2pg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Song, Yang</creator><creator>Xu, Chunxiao</creator><creator>Huang, Weixi</creator><creator>Wang, Lili</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><general>AML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China%AML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China%Institute of Applied Physics and Computational Mathematics,Beijing 100094,China</general><general>Institute of Applied Physics and Computational Mathematics,Beijing 100094,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200201</creationdate><title>Transient growth in turbulent particle-laden channel flow</title><author>Song, Yang ; Xu, Chunxiao ; Huang, Weixi ; Wang, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-8e94a506bfd3ce15f75d026b5932af685481ff3166c38b0e6fab9fa8fc645743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Channel flow</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Direct numerical simulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Xu, Chunxiao</au><au>Huang, Weixi</au><au>Wang, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient growth in turbulent particle-laden channel flow</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work. The problem is formulated in the framework of a Eulerian–Eulerian approach, employing two-way coupling between fine particles and fluid flow. The model is first validated in laminar cases, after which the transient growth of coherent perturbations in turbulent channel flow is investigated, where the mean particle concentration distribution is obtained by direct numerical simulation. It is shown that the optimal small-scale structures for particles are streamwise streaks just below the optimal streamwise velocity streaks, as was previously found in numerical simulations of particle-laden channel flow. This indicates that the optimal growth of perturbations is a dominant mechanism for the distribution of particles in the near-wall region. The current study also considers the transient growth of small- and large-scale perturbations at relatively high Reynolds numbers, which reveals that the optimal large-scale structures for particles are in the near-wall region while the optimal large-scale structures for fluid enter the outer region.</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-019-00902-w</doi><tpages>11</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0567-7718
ispartof Acta mechanica Sinica, 2020-02, Vol.36 (1), p.1-11
issn 0567-7718
1614-3116
language eng
recordid cdi_wanfang_journals_lxxb_e202001002
source SpringerNature Journals
subjects Channel flow
Classical and Continuum Physics
Computational fluid dynamics
Computational Intelligence
Computer simulation
Direct numerical simulation
Engineering
Engineering Fluid Dynamics
Fluid flow
Mathematical models
Research Paper
Theoretical and Applied Mechanics
Turbulent flow
title Transient growth in turbulent particle-laden channel flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20growth%20in%20turbulent%20particle-laden%20channel%20flow&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Song,%20Yang&rft.date=2020-02-01&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-019-00902-w&rft_dat=%3Cwanfang_jour_proqu%3Elxxb_e202001002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2367954294&rft_id=info:pmid/&rft_wanfj_id=lxxb_e202001002&rfr_iscdi=true