Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter...
Gespeichert in:
Veröffentlicht in: | Acta mechanica Sinica 2018-06, Vol.34 (3), p.561-577 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | 3 |
container_start_page | 561 |
container_title | Acta mechanica Sinica |
container_volume | 34 |
creator | Fang, Fei Xia, Guanghui Wang, Jianguo |
description | The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold. |
doi_str_mv | 10.1007/s10409-017-0743-y |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lxxb_e201803014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>lxxb_e201803014</wanfj_id><sourcerecordid>lxxb_e201803014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</originalsourceid><addsrcrecordid>eNp10U9PwyAYBnBiNHFOP4A3Eg-eqrxtKd3RLP5LFr3omVB4O1k6OqHV1ZvfXGZNdvIEIb_nDfAQcg7sChgT1wFYzmYJA5EwkWfJcEAmUECeZADFIZkwXohECCiPyUkIK8ayAgRMyPdT6xrrUHlqBqfWVlPlVDMEG2hbU61cZxv8QI-Gbix-tdig7nxk6NAvB_qm_AeGDn2gvTPoabDrvumUw7YPdKO8WuOvV85Q3EYYx8eNtp3qbOvCKTmqVRPw7G-dkte725f5Q7J4vn-c3ywSneVll-i6KExaCaZnNVaa1yUXFeeC746RIc91bkyltQHBSwHZTBmDuci4SDXHOpuSy3Hup3K1cku5avvdXYJstttKYsqgZBmDPMqLUW58-97Hx-1pGn85KiGKqGBU2rcheKzlxtu18oMEJnedyLETGTuRu07kEDPpmAnRuiX6_eT_Qz-ot5O-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040803776</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</title><source>Springer Online Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fang, Fei ; Xia, Guanghui ; Wang, Jianguo</creator><creatorcontrib>Fang, Fei ; Xia, Guanghui ; Wang, Jianguo</creatorcontrib><description>The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-017-0743-y</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Cantilever beams ; Classical and Continuum Physics ; Computational Intelligence ; Damping ; Deformation ; Dynamical systems ; Energy consumption ; Energy harvesting ; Engineering ; Engineering Fluid Dynamics ; Excitation ; Galerkin method ; Harmonic balance method ; Harvesters ; Load resistance ; Mathematical models ; Nonlinear analysis ; Nonlinear dynamics ; Nonlinearity ; Parameters ; Performance prediction ; Piezoelectricity ; Research Paper ; Substrates ; Theoretical and Applied Mechanics</subject><ispartof>Acta mechanica Sinica, 2018-06, Vol.34 (3), p.561-577</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</citedby><cites>FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lxxb-e/lxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-017-0743-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-017-0743-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fang, Fei</creatorcontrib><creatorcontrib>Xia, Guanghui</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><title>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.</description><subject>Cantilever beams</subject><subject>Classical and Continuum Physics</subject><subject>Computational Intelligence</subject><subject>Damping</subject><subject>Deformation</subject><subject>Dynamical systems</subject><subject>Energy consumption</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Excitation</subject><subject>Galerkin method</subject><subject>Harmonic balance method</subject><subject>Harvesters</subject><subject>Load resistance</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Piezoelectricity</subject><subject>Research Paper</subject><subject>Substrates</subject><subject>Theoretical and Applied Mechanics</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10U9PwyAYBnBiNHFOP4A3Eg-eqrxtKd3RLP5LFr3omVB4O1k6OqHV1ZvfXGZNdvIEIb_nDfAQcg7sChgT1wFYzmYJA5EwkWfJcEAmUECeZADFIZkwXohECCiPyUkIK8ayAgRMyPdT6xrrUHlqBqfWVlPlVDMEG2hbU61cZxv8QI-Gbix-tdig7nxk6NAvB_qm_AeGDn2gvTPoabDrvumUw7YPdKO8WuOvV85Q3EYYx8eNtp3qbOvCKTmqVRPw7G-dkte725f5Q7J4vn-c3ywSneVll-i6KExaCaZnNVaa1yUXFeeC746RIc91bkyltQHBSwHZTBmDuci4SDXHOpuSy3Hup3K1cku5avvdXYJstttKYsqgZBmDPMqLUW58-97Hx-1pGn85KiGKqGBU2rcheKzlxtu18oMEJnedyLETGTuRu07kEDPpmAnRuiX6_eT_Qz-ot5O-</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Fang, Fei</creator><creator>Xia, Guanghui</creator><creator>Wang, Jianguo</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><general>School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180601</creationdate><title>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</title><author>Fang, Fei ; Xia, Guanghui ; Wang, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cantilever beams</topic><topic>Classical and Continuum Physics</topic><topic>Computational Intelligence</topic><topic>Damping</topic><topic>Deformation</topic><topic>Dynamical systems</topic><topic>Energy consumption</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Excitation</topic><topic>Galerkin method</topic><topic>Harmonic balance method</topic><topic>Harvesters</topic><topic>Load resistance</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Piezoelectricity</topic><topic>Research Paper</topic><topic>Substrates</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Fei</creatorcontrib><creatorcontrib>Xia, Guanghui</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Fei</au><au>Xia, Guanghui</au><au>Wang, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>561</spage><epage>577</epage><pages>561-577</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-017-0743-y</doi><tpages>17</tpages><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0567-7718 |
ispartof | Acta mechanica Sinica, 2018-06, Vol.34 (3), p.561-577 |
issn | 0567-7718 1614-3116 |
language | eng |
recordid | cdi_wanfang_journals_lxxb_e201803014 |
source | Springer Online Journals Complete; Alma/SFX Local Collection |
subjects | Cantilever beams Classical and Continuum Physics Computational Intelligence Damping Deformation Dynamical systems Energy consumption Energy harvesting Engineering Engineering Fluid Dynamics Excitation Galerkin method Harmonic balance method Harvesters Load resistance Mathematical models Nonlinear analysis Nonlinear dynamics Nonlinearity Parameters Performance prediction Piezoelectricity Research Paper Substrates Theoretical and Applied Mechanics |
title | Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20cantilevered%20piezoelectric%20energy%20harvesters%20under%20simultaneous%20parametric%20and%20external%20excitations&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Fang,%20Fei&rft.date=2018-06-01&rft.volume=34&rft.issue=3&rft.spage=561&rft.epage=577&rft.pages=561-577&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-017-0743-y&rft_dat=%3Cwanfang_jour_proqu%3Elxxb_e201803014%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040803776&rft_id=info:pmid/&rft_wanfj_id=lxxb_e201803014&rfr_iscdi=true |