Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2018-06, Vol.34 (3), p.561-577
Hauptverfasser: Fang, Fei, Xia, Guanghui, Wang, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 3
container_start_page 561
container_title Acta mechanica Sinica
container_volume 34
creator Fang, Fei
Xia, Guanghui
Wang, Jianguo
description The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.
doi_str_mv 10.1007/s10409-017-0743-y
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_lxxb_e201803014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>lxxb_e201803014</wanfj_id><sourcerecordid>lxxb_e201803014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</originalsourceid><addsrcrecordid>eNp10U9PwyAYBnBiNHFOP4A3Eg-eqrxtKd3RLP5LFr3omVB4O1k6OqHV1ZvfXGZNdvIEIb_nDfAQcg7sChgT1wFYzmYJA5EwkWfJcEAmUECeZADFIZkwXohECCiPyUkIK8ayAgRMyPdT6xrrUHlqBqfWVlPlVDMEG2hbU61cZxv8QI-Gbix-tdig7nxk6NAvB_qm_AeGDn2gvTPoabDrvumUw7YPdKO8WuOvV85Q3EYYx8eNtp3qbOvCKTmqVRPw7G-dkte725f5Q7J4vn-c3ywSneVll-i6KExaCaZnNVaa1yUXFeeC746RIc91bkyltQHBSwHZTBmDuci4SDXHOpuSy3Hup3K1cku5avvdXYJstttKYsqgZBmDPMqLUW58-97Hx-1pGn85KiGKqGBU2rcheKzlxtu18oMEJnedyLETGTuRu07kEDPpmAnRuiX6_eT_Qz-ot5O-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040803776</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</title><source>Springer Online Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fang, Fei ; Xia, Guanghui ; Wang, Jianguo</creator><creatorcontrib>Fang, Fei ; Xia, Guanghui ; Wang, Jianguo</creatorcontrib><description>The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-017-0743-y</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Cantilever beams ; Classical and Continuum Physics ; Computational Intelligence ; Damping ; Deformation ; Dynamical systems ; Energy consumption ; Energy harvesting ; Engineering ; Engineering Fluid Dynamics ; Excitation ; Galerkin method ; Harmonic balance method ; Harvesters ; Load resistance ; Mathematical models ; Nonlinear analysis ; Nonlinear dynamics ; Nonlinearity ; Parameters ; Performance prediction ; Piezoelectricity ; Research Paper ; Substrates ; Theoretical and Applied Mechanics</subject><ispartof>Acta mechanica Sinica, 2018-06, Vol.34 (3), p.561-577</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</citedby><cites>FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/lxxb-e/lxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-017-0743-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-017-0743-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fang, Fei</creatorcontrib><creatorcontrib>Xia, Guanghui</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><title>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.</description><subject>Cantilever beams</subject><subject>Classical and Continuum Physics</subject><subject>Computational Intelligence</subject><subject>Damping</subject><subject>Deformation</subject><subject>Dynamical systems</subject><subject>Energy consumption</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Excitation</subject><subject>Galerkin method</subject><subject>Harmonic balance method</subject><subject>Harvesters</subject><subject>Load resistance</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Piezoelectricity</subject><subject>Research Paper</subject><subject>Substrates</subject><subject>Theoretical and Applied Mechanics</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10U9PwyAYBnBiNHFOP4A3Eg-eqrxtKd3RLP5LFr3omVB4O1k6OqHV1ZvfXGZNdvIEIb_nDfAQcg7sChgT1wFYzmYJA5EwkWfJcEAmUECeZADFIZkwXohECCiPyUkIK8ayAgRMyPdT6xrrUHlqBqfWVlPlVDMEG2hbU61cZxv8QI-Gbix-tdig7nxk6NAvB_qm_AeGDn2gvTPoabDrvumUw7YPdKO8WuOvV85Q3EYYx8eNtp3qbOvCKTmqVRPw7G-dkte725f5Q7J4vn-c3ywSneVll-i6KExaCaZnNVaa1yUXFeeC746RIc91bkyltQHBSwHZTBmDuci4SDXHOpuSy3Hup3K1cku5avvdXYJstttKYsqgZBmDPMqLUW58-97Hx-1pGn85KiGKqGBU2rcheKzlxtu18oMEJnedyLETGTuRu07kEDPpmAnRuiX6_eT_Qz-ot5O-</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Fang, Fei</creator><creator>Xia, Guanghui</creator><creator>Wang, Jianguo</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><general>School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20180601</creationdate><title>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</title><author>Fang, Fei ; Xia, Guanghui ; Wang, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-cf66d2b70c9febc5f857b557566d2e0e54c4ddbccd17587139adde473572c5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cantilever beams</topic><topic>Classical and Continuum Physics</topic><topic>Computational Intelligence</topic><topic>Damping</topic><topic>Deformation</topic><topic>Dynamical systems</topic><topic>Energy consumption</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Excitation</topic><topic>Galerkin method</topic><topic>Harmonic balance method</topic><topic>Harvesters</topic><topic>Load resistance</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Piezoelectricity</topic><topic>Research Paper</topic><topic>Substrates</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Fei</creatorcontrib><creatorcontrib>Xia, Guanghui</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Fei</au><au>Xia, Guanghui</au><au>Wang, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>561</spage><epage>577</epage><pages>561-577</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton’s principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-017-0743-y</doi><tpages>17</tpages><edition>English ed.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0567-7718
ispartof Acta mechanica Sinica, 2018-06, Vol.34 (3), p.561-577
issn 0567-7718
1614-3116
language eng
recordid cdi_wanfang_journals_lxxb_e201803014
source Springer Online Journals Complete; Alma/SFX Local Collection
subjects Cantilever beams
Classical and Continuum Physics
Computational Intelligence
Damping
Deformation
Dynamical systems
Energy consumption
Energy harvesting
Engineering
Engineering Fluid Dynamics
Excitation
Galerkin method
Harmonic balance method
Harvesters
Load resistance
Mathematical models
Nonlinear analysis
Nonlinear dynamics
Nonlinearity
Parameters
Performance prediction
Piezoelectricity
Research Paper
Substrates
Theoretical and Applied Mechanics
title Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20cantilevered%20piezoelectric%20energy%20harvesters%20under%20simultaneous%20parametric%20and%20external%20excitations&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Fang,%20Fei&rft.date=2018-06-01&rft.volume=34&rft.issue=3&rft.spage=561&rft.epage=577&rft.pages=561-577&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-017-0743-y&rft_dat=%3Cwanfang_jour_proqu%3Elxxb_e201803014%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040803776&rft_id=info:pmid/&rft_wanfj_id=lxxb_e201803014&rfr_iscdi=true