注意力机制下轻量化网络视频行为识别方法
TP391.4; 为了解决视频行为识别中网络模型结构过于复杂且计算量大的问题,提出一种基于MobileNet+BiGRU结构的轻量化视频行为识别方法.通过嵌入注意力机制提取改进的MobileNet网络视频单帧画面空间特征,将多帧画面的空间特征叠加后送入BiGRU网络提取时序特征,并通过softmax分类器进行分类.对比实验表明,该方法在UCF-101和HMDB51数据集上的识别率分别达到81.4%和56.8%,相比未使用注意力机制的模型分别提升4.7%和6.2%,计算量仅相当于ResNet50+LSTM结构的7.7%,表明该方法比其他方法效率更高....
Gespeichert in:
Veröffentlicht in: | 厦门理工学院学报 2022, Vol.30 (5), p.54-63 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391.4; 为了解决视频行为识别中网络模型结构过于复杂且计算量大的问题,提出一种基于MobileNet+BiGRU结构的轻量化视频行为识别方法.通过嵌入注意力机制提取改进的MobileNet网络视频单帧画面空间特征,将多帧画面的空间特征叠加后送入BiGRU网络提取时序特征,并通过softmax分类器进行分类.对比实验表明,该方法在UCF-101和HMDB51数据集上的识别率分别达到81.4%和56.8%,相比未使用注意力机制的模型分别提升4.7%和6.2%,计算量仅相当于ResNet50+LSTM结构的7.7%,表明该方法比其他方法效率更高. |
---|---|
ISSN: | 1673-4432 |
DOI: | 10.19697/j.cnki.1673-4432.202205008 |