Electrocardiogram (ECG) pattern modeling and recognition via deterministic learning

A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal featu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control theory and technology 2014-11, Vol.12 (4), p.333-344
Hauptverfasser: Dong, Xunde, Wang, Cong, Hu, Junmin, Ou, Shanxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 4
container_start_page 333
container_title Control theory and technology
container_volume 12
creator Dong, Xunde
Wang, Cong
Hu, Junmin
Ou, Shanxing
description A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are included to demonstrate the effectiveness of the approach.
doi_str_mv 10.1007/s11768-014-4056-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_kzllyyy_e201404001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>kzllyyy_e201404001</wanfj_id><sourcerecordid>kzllyyy_e201404001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2711-a4c1bc7a57ea2e612cd3c63d5bd761f3534a547229384f1685214f7a53b67f93</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouOh-AG89rkI1kz9Ne5RlXYUFD-49ZNO0ZG2TNekq9dObpYInTzMMvzcz7yF0A_geMBYPEUAUZY6B5QzzImdnaEagSpOKkfPU44rnRVXSSzSPcY9xIkFQWs7Q26ozegheq1Bb3wbVZ4vVcn2bHdQwmOCy3tems67NlKuzYLRvnR2sd9mnVVltEtNbZ-NgddYZFVxCr9FFo7po5r_1Cm2fVtvlc755Xb8sHze5JgIgV0zDTgvFhVHEFEB0TXVBa76rRQEN5ZQpzgQhFS1ZA0XJCbAm8XRXiKaiV-huWvulXKNcK_f-GFw6KN-_u24cR2lIMopZspvgxQQfgv84mjjI3kZtuk45449RQolLAM44SShMqA4-xmAaeQi2V2GUgOUpbznlLdNyecpbsqQhkyYm1rUm_D3zv-gHVquB6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808115452</pqid></control><display><type>article</type><title>Electrocardiogram (ECG) pattern modeling and recognition via deterministic learning</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Dong, Xunde ; Wang, Cong ; Hu, Junmin ; Ou, Shanxing</creator><creatorcontrib>Dong, Xunde ; Wang, Cong ; Hu, Junmin ; Ou, Shanxing</creatorcontrib><description>A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are included to demonstrate the effectiveness of the approach.</description><identifier>ISSN: 2095-6983</identifier><identifier>EISSN: 2198-0942</identifier><identifier>DOI: 10.1007/s11768-014-4056-4</identifier><language>eng</language><publisher>Heidelberg: South China University of Technology and Academy of Mathematics and Systems Science, CAS</publisher><subject>Complexity ; Computational Intelligence ; Constants ; Control ; Control and Systems Theory ; Dynamics ; Engineering ; Learning ; Learning theory ; Mechatronics ; Modelling ; Optimization ; Pattern recognition ; Recognition ; Robotics ; Systems Theory</subject><ispartof>Control theory and technology, 2014-11, Vol.12 (4), p.333-344</ispartof><rights>South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2711-a4c1bc7a57ea2e612cd3c63d5bd761f3534a547229384f1685214f7a53b67f93</citedby><cites>FETCH-LOGICAL-c2711-a4c1bc7a57ea2e612cd3c63d5bd761f3534a547229384f1685214f7a53b67f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/kzllyyy-e/kzllyyy-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11768-014-4056-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11768-014-4056-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Dong, Xunde</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Hu, Junmin</creatorcontrib><creatorcontrib>Ou, Shanxing</creatorcontrib><title>Electrocardiogram (ECG) pattern modeling and recognition via deterministic learning</title><title>Control theory and technology</title><addtitle>Control Theory Technol</addtitle><description>A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are included to demonstrate the effectiveness of the approach.</description><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Constants</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Robotics</subject><subject>Systems Theory</subject><issn>2095-6983</issn><issn>2198-0942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouOh-AG89rkI1kz9Ne5RlXYUFD-49ZNO0ZG2TNekq9dObpYInTzMMvzcz7yF0A_geMBYPEUAUZY6B5QzzImdnaEagSpOKkfPU44rnRVXSSzSPcY9xIkFQWs7Q26ozegheq1Bb3wbVZ4vVcn2bHdQwmOCy3tems67NlKuzYLRvnR2sd9mnVVltEtNbZ-NgddYZFVxCr9FFo7po5r_1Cm2fVtvlc755Xb8sHze5JgIgV0zDTgvFhVHEFEB0TXVBa76rRQEN5ZQpzgQhFS1ZA0XJCbAm8XRXiKaiV-huWvulXKNcK_f-GFw6KN-_u24cR2lIMopZspvgxQQfgv84mjjI3kZtuk45449RQolLAM44SShMqA4-xmAaeQi2V2GUgOUpbznlLdNyecpbsqQhkyYm1rUm_D3zv-gHVquB6Q</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Dong, Xunde</creator><creator>Wang, Cong</creator><creator>Hu, Junmin</creator><creator>Ou, Shanxing</creator><general>South China University of Technology and Academy of Mathematics and Systems Science, CAS</general><general>School of Automation Science and Engineering, South China University of Technology, Guangzhou Guangdong 510640, China%Department of Radiology, General Hospital of Guangzhou Military Command, Guangzhou Guangdong 510010, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141101</creationdate><title>Electrocardiogram (ECG) pattern modeling and recognition via deterministic learning</title><author>Dong, Xunde ; Wang, Cong ; Hu, Junmin ; Ou, Shanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2711-a4c1bc7a57ea2e612cd3c63d5bd761f3534a547229384f1685214f7a53b67f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Constants</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Robotics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xunde</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Hu, Junmin</creatorcontrib><creatorcontrib>Ou, Shanxing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Control theory and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xunde</au><au>Wang, Cong</au><au>Hu, Junmin</au><au>Ou, Shanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocardiogram (ECG) pattern modeling and recognition via deterministic learning</atitle><jtitle>Control theory and technology</jtitle><stitle>Control Theory Technol</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>12</volume><issue>4</issue><spage>333</spage><epage>344</epage><pages>333-344</pages><issn>2095-6983</issn><eissn>2198-0942</eissn><abstract>A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are included to demonstrate the effectiveness of the approach.</abstract><cop>Heidelberg</cop><pub>South China University of Technology and Academy of Mathematics and Systems Science, CAS</pub><doi>10.1007/s11768-014-4056-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-6983
ispartof Control theory and technology, 2014-11, Vol.12 (4), p.333-344
issn 2095-6983
2198-0942
language eng
recordid cdi_wanfang_journals_kzllyyy_e201404001
source SpringerNature Journals; Alma/SFX Local Collection
subjects Complexity
Computational Intelligence
Constants
Control
Control and Systems Theory
Dynamics
Engineering
Learning
Learning theory
Mechatronics
Modelling
Optimization
Pattern recognition
Recognition
Robotics
Systems Theory
title Electrocardiogram (ECG) pattern modeling and recognition via deterministic learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocardiogram%20(ECG)%20pattern%20modeling%20and%20recognition%20via%20deterministic%20learning&rft.jtitle=Control%20theory%20and%20technology&rft.au=Dong,%20Xunde&rft.date=2014-11-01&rft.volume=12&rft.issue=4&rft.spage=333&rft.epage=344&rft.pages=333-344&rft.issn=2095-6983&rft.eissn=2198-0942&rft_id=info:doi/10.1007/s11768-014-4056-4&rft_dat=%3Cwanfang_jour_proqu%3Ekzllyyy_e201404001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808115452&rft_id=info:pmid/&rft_wanfj_id=kzllyyy_e201404001&rfr_iscdi=true