Asymptotic Analysis Soot Model and Experiment for a Directed Injection Engine

The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of mechanical engineering 2012-09, Vol.25 (5), p.1011-1015
Hauptverfasser: Liu, Yongfeng, Pei, Pucheng, Xiong, Qinghui, Lu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 5
container_start_page 1011
container_title Chinese journal of mechanical engineering
container_volume 25
creator Liu, Yongfeng
Pei, Pucheng
Xiong, Qinghui
Lu, Yong
description The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T〈 1 500 K and excess air factor Ф〉0.6, only the soot precursors-- polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ≥ 1 500 K and excess air factor Ф〈0.6, PAHs and soot source terms (particle inception, surface growth, oxidation, coagulation) are calculated. The TP model is then implemented in KIVA code instead of original model to carry out optimizing. KIVA standard model and experimental data are analyzed for the results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.
doi_str_mv 10.3901/CJME.2012.05.1011
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jxgcxb_e201205022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43532687</cqvip_id><wanfj_id>jxgcxb_e201205022</wanfj_id><sourcerecordid>jxgcxb_e201205022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-9fe64d42d6573c35f2a3f71dd1bed79c4e6f13b2a2d23c49c41582216de59b123</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9Ae4wrlxM5V6GeSybWl-xcaGuCR2YcZoWKkxj--9lUmN3roCb75xzOYRcAhvxksHt5Hk2HSEDHDExAgZwRAYIJSYFiuKYDIAxlpQ8FafkLIRFfGUAxYDMxmG3Wneuays6tmq5C22gb851dOa0WVJlNZ1u18a3K2M7WjtPFb1rvak6o-mTXcRL6yyd2qa15pyc1GoZzMXvOSQf99P3yWPy8vrwNBm_JBXPsy4pa5OlOkWdiZxXXNSoeJ2D1jA3Oi-r1GQ18Dkq1MirNA5AFIiQaSPKOSAfkpu977eytbKNXLiNj9sHudg21XYuTV8FEwx79nrPrr372pjQHWBEUfI8RUwjBXuq8i4Eb2q5jl9WfieByb5h2Tcse1vJhOwbjhrca0JkbWP8wfk_0dVv0KezzVfU_SWlXHDMipz_AAYch-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259374224</pqid></control><display><type>article</type><title>Asymptotic Analysis Soot Model and Experiment for a Directed Injection Engine</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Yongfeng ; Pei, Pucheng ; Xiong, Qinghui ; Lu, Yong</creator><creatorcontrib>Liu, Yongfeng ; Pei, Pucheng ; Xiong, Qinghui ; Lu, Yong</creatorcontrib><description>The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T〈 1 500 K and excess air factor Ф〉0.6, only the soot precursors-- polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ≥ 1 500 K and excess air factor Ф〈0.6, PAHs and soot source terms (particle inception, surface growth, oxidation, coagulation) are calculated. The TP model is then implemented in KIVA code instead of original model to carry out optimizing. KIVA standard model and experimental data are analyzed for the results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.</description><edition>English ed.</edition><identifier>ISSN: 1000-9345</identifier><identifier>EISSN: 2192-8258</identifier><identifier>DOI: 10.3901/CJME.2012.05.1011</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society</publisher><subject>Aerodynamics ; Coagulation ; Common rail ; Computational fluid dynamics ; Cylinders ; Diesel engines ; Electrical Machines and Networks ; Electronics and Microelectronics ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Instrumentation ; Internal combustion engines ; Machines ; Manufacturing ; Mathematical models ; Mechanical Engineering ; Model accuracy ; Optimization ; Oxidation ; Polycyclic aromatic hydrocarbons ; Power Electronics ; Processes ; Researchers ; Soot ; Standard model (particle physics) ; Theoretical and Applied Mechanics ; 实验数据 ; 柴油发动机 ; 渐近分析 ; 灰模型 ; 直喷发动机 ; 计算流体动力学 ; 计算误差 ; 过量空气系数</subject><ispartof>Chinese journal of mechanical engineering, 2012-09, Vol.25 (5), p.1011-1015</ispartof><rights>Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Chinese Journal of Mechanical Engineering is a copyright of Springer, (2012). All Rights Reserved.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-9fe64d42d6573c35f2a3f71dd1bed79c4e6f13b2a2d23c49c41582216de59b123</citedby><cites>FETCH-LOGICAL-c376t-9fe64d42d6573c35f2a3f71dd1bed79c4e6f13b2a2d23c49c41582216de59b123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85891X/85891X.jpg</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Yongfeng</creatorcontrib><creatorcontrib>Pei, Pucheng</creatorcontrib><creatorcontrib>Xiong, Qinghui</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><title>Asymptotic Analysis Soot Model and Experiment for a Directed Injection Engine</title><title>Chinese journal of mechanical engineering</title><addtitle>Chin. J. Mech. Eng</addtitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><description>The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T〈 1 500 K and excess air factor Ф〉0.6, only the soot precursors-- polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ≥ 1 500 K and excess air factor Ф〈0.6, PAHs and soot source terms (particle inception, surface growth, oxidation, coagulation) are calculated. The TP model is then implemented in KIVA code instead of original model to carry out optimizing. KIVA standard model and experimental data are analyzed for the results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.</description><subject>Aerodynamics</subject><subject>Coagulation</subject><subject>Common rail</subject><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Diesel engines</subject><subject>Electrical Machines and Networks</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation</subject><subject>Internal combustion engines</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Power Electronics</subject><subject>Processes</subject><subject>Researchers</subject><subject>Soot</subject><subject>Standard model (particle physics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>实验数据</subject><subject>柴油发动机</subject><subject>渐近分析</subject><subject>灰模型</subject><subject>直喷发动机</subject><subject>计算流体动力学</subject><subject>计算误差</subject><subject>过量空气系数</subject><issn>1000-9345</issn><issn>2192-8258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPAyEUhYnRxFr9Ae4wrlxM5V6GeSybWl-xcaGuCR2YcZoWKkxj--9lUmN3roCb75xzOYRcAhvxksHt5Hk2HSEDHDExAgZwRAYIJSYFiuKYDIAxlpQ8FafkLIRFfGUAxYDMxmG3Wneuays6tmq5C22gb851dOa0WVJlNZ1u18a3K2M7WjtPFb1rvak6o-mTXcRL6yyd2qa15pyc1GoZzMXvOSQf99P3yWPy8vrwNBm_JBXPsy4pa5OlOkWdiZxXXNSoeJ2D1jA3Oi-r1GQ18Dkq1MirNA5AFIiQaSPKOSAfkpu977eytbKNXLiNj9sHudg21XYuTV8FEwx79nrPrr372pjQHWBEUfI8RUwjBXuq8i4Eb2q5jl9WfieByb5h2Tcse1vJhOwbjhrca0JkbWP8wfk_0dVv0KezzVfU_SWlXHDMipz_AAYch-Y</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Liu, Yongfeng</creator><creator>Pei, Pucheng</creator><creator>Xiong, Qinghui</creator><creator>Lu, Yong</creator><general>Chinese Mechanical Engineering Society</general><general>Springer Nature B.V</general><general>Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China%Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute,Beijing 100072, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120901</creationdate><title>Asymptotic Analysis Soot Model and Experiment for a Directed Injection Engine</title><author>Liu, Yongfeng ; Pei, Pucheng ; Xiong, Qinghui ; Lu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-9fe64d42d6573c35f2a3f71dd1bed79c4e6f13b2a2d23c49c41582216de59b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Coagulation</topic><topic>Common rail</topic><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Diesel engines</topic><topic>Electrical Machines and Networks</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation</topic><topic>Internal combustion engines</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Power Electronics</topic><topic>Processes</topic><topic>Researchers</topic><topic>Soot</topic><topic>Standard model (particle physics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>实验数据</topic><topic>柴油发动机</topic><topic>渐近分析</topic><topic>灰模型</topic><topic>直喷发动机</topic><topic>计算流体动力学</topic><topic>计算误差</topic><topic>过量空气系数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yongfeng</creatorcontrib><creatorcontrib>Pei, Pucheng</creatorcontrib><creatorcontrib>Xiong, Qinghui</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yongfeng</au><au>Pei, Pucheng</au><au>Xiong, Qinghui</au><au>Lu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Analysis Soot Model and Experiment for a Directed Injection Engine</atitle><jtitle>Chinese journal of mechanical engineering</jtitle><stitle>Chin. J. Mech. Eng</stitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>25</volume><issue>5</issue><spage>1011</spage><epage>1015</epage><pages>1011-1015</pages><issn>1000-9345</issn><eissn>2192-8258</eissn><abstract>The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T〈 1 500 K and excess air factor Ф〉0.6, only the soot precursors-- polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ≥ 1 500 K and excess air factor Ф〈0.6, PAHs and soot source terms (particle inception, surface growth, oxidation, coagulation) are calculated. The TP model is then implemented in KIVA code instead of original model to carry out optimizing. KIVA standard model and experimental data are analyzed for the results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society</pub><doi>10.3901/CJME.2012.05.1011</doi><tpages>5</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9345
ispartof Chinese journal of mechanical engineering, 2012-09, Vol.25 (5), p.1011-1015
issn 1000-9345
2192-8258
language eng
recordid cdi_wanfang_journals_jxgcxb_e201205022
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aerodynamics
Coagulation
Common rail
Computational fluid dynamics
Cylinders
Diesel engines
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Instrumentation
Internal combustion engines
Machines
Manufacturing
Mathematical models
Mechanical Engineering
Model accuracy
Optimization
Oxidation
Polycyclic aromatic hydrocarbons
Power Electronics
Processes
Researchers
Soot
Standard model (particle physics)
Theoretical and Applied Mechanics
实验数据
柴油发动机
渐近分析
灰模型
直喷发动机
计算流体动力学
计算误差
过量空气系数
title Asymptotic Analysis Soot Model and Experiment for a Directed Injection Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Analysis%20Soot%20Model%20and%20Experiment%20for%20a%20Directed%20Injection%20Engine&rft.jtitle=Chinese%20journal%20of%20mechanical%20engineering&rft.au=Liu,%20Yongfeng&rft.date=2012-09-01&rft.volume=25&rft.issue=5&rft.spage=1011&rft.epage=1015&rft.pages=1011-1015&rft.issn=1000-9345&rft.eissn=2192-8258&rft_id=info:doi/10.3901/CJME.2012.05.1011&rft_dat=%3Cwanfang_jour_proqu%3Ejxgcxb_e201205022%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259374224&rft_id=info:pmid/&rft_cqvip_id=43532687&rft_wanfj_id=jxgcxb_e201205022&rfr_iscdi=true