3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-...
Gespeichert in:
Veröffentlicht in: | Chinese journal of mechanical engineering 2012-05, Vol.25 (3), p.491-497 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 497 |
---|---|
container_issue | 3 |
container_start_page | 491 |
container_title | Chinese journal of mechanical engineering |
container_volume | 25 |
creator | Liu, Houlin Wang, Kai Yuan, Shouqi Tan, Minggao Wang, Yong Ru, Weimin |
description | The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps. |
doi_str_mv | 10.3901/cjme.2012.03.491 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jxgcxb_e201203010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42133450</cqvip_id><wanfj_id>jxgcxb_e201203010</wanfj_id><sourcerecordid>jxgcxb_e201203010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9b079723ac00ea4cdbdd983f29c4ee44f1ed5be6034ddf078a5b6cb54ace89893</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EEqWwMxoxMSRcP9LGI_QBRUV0KKyW49yEVnm0TqO2_x5XRXRjsix93znyMSG3DEKhgD3aZYkhB8ZDEKFU7Ix0OFM8iHkUn5MOA4BACRldkqumWfpbj7G4Q2ZiSGfGbRa2QDopTY70C4vaLkrcuD2dY7OhdUYnVYWOjot6SxcVNXRYt4kXnguTIp215cq7KywKdNfkIjNFgze_Z5d8jkfzwWsw_XiZDJ6mgZVCbQKVQF_1uTAWAI20aZKmKhYZV1YiSpkxTKMEeyBkmmbQj02U9GwSSWMxVrESXfJwzN2aKjNVrpd16yrfqJe73O4SjYcxQAADz94f2ZWr161_0gnmPFKiL6WSnoIjZV3dNA4zvXKL0ri9ZqAPG-vB2_tIH2I1CO039go7Ko1HqxzdKfgf5-635ruu8rXX_nokZ8J_EYgfYLyIlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259374494</pqid></control><display><type>article</type><title>3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Liu, Houlin ; Wang, Kai ; Yuan, Shouqi ; Tan, Minggao ; Wang, Yong ; Ru, Weimin</creator><creatorcontrib>Liu, Houlin ; Wang, Kai ; Yuan, Shouqi ; Tan, Minggao ; Wang, Yong ; Ru, Weimin</creatorcontrib><description>The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.</description><edition>English ed.</edition><identifier>ISSN: 1000-9345</identifier><identifier>EISSN: 2192-8258</identifier><identifier>DOI: 10.3901/cjme.2012.03.491</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society</publisher><subject>C (programming language) ; Design optimization ; Electrical Machines and Networks ; Electronics and Microelectronics ; Engineering ; Engineering Thermodynamics ; Fiber optics ; Flow characteristics ; Flow velocity ; Fluid flow ; Heat and Mass Transfer ; Impellers ; Instrumentation ; Internal flow ; Low flow ; Machines ; Manufacturing ; Mechanical Engineering ; Optical fibers ; Particle image velocimetry ; PIV测试 ; Power Electronics ; Processes ; Suction ; Synchronism ; Theoretical and Applied Mechanics ; Velocity ; Velocity distribution ; Velocity measurement ; Visual C ; Visual programming languages ; 三维粒子 ; 内部流动 ; 双叶片泵 ; 叶轮 ; 图像测试 ; 粒子图像测速 ; 设计条件</subject><ispartof>Chinese journal of mechanical engineering, 2012-05, Vol.25 (3), p.491-497</ispartof><rights>Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Chinese Journal of Mechanical Engineering is a copyright of Springer, (2012). All Rights Reserved.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9b079723ac00ea4cdbdd983f29c4ee44f1ed5be6034ddf078a5b6cb54ace89893</citedby><cites>FETCH-LOGICAL-c439t-9b079723ac00ea4cdbdd983f29c4ee44f1ed5be6034ddf078a5b6cb54ace89893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85891X/85891X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Houlin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Yuan, Shouqi</creatorcontrib><creatorcontrib>Tan, Minggao</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Ru, Weimin</creatorcontrib><title>3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller</title><title>Chinese journal of mechanical engineering</title><addtitle>Chin. J. Mech. Eng</addtitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><description>The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.</description><subject>C (programming language)</subject><subject>Design optimization</subject><subject>Electrical Machines and Networks</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fiber optics</subject><subject>Flow characteristics</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Impellers</subject><subject>Instrumentation</subject><subject>Internal flow</subject><subject>Low flow</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Optical fibers</subject><subject>Particle image velocimetry</subject><subject>PIV测试</subject><subject>Power Electronics</subject><subject>Processes</subject><subject>Suction</subject><subject>Synchronism</subject><subject>Theoretical and Applied Mechanics</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><subject>Visual C</subject><subject>Visual programming languages</subject><subject>三维粒子</subject><subject>内部流动</subject><subject>双叶片泵</subject><subject>叶轮</subject><subject>图像测试</subject><subject>粒子图像测速</subject><subject>设计条件</subject><issn>1000-9345</issn><issn>2192-8258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kTtPwzAUhS0EEqWwMxoxMSRcP9LGI_QBRUV0KKyW49yEVnm0TqO2_x5XRXRjsix93znyMSG3DEKhgD3aZYkhB8ZDEKFU7Ix0OFM8iHkUn5MOA4BACRldkqumWfpbj7G4Q2ZiSGfGbRa2QDopTY70C4vaLkrcuD2dY7OhdUYnVYWOjot6SxcVNXRYt4kXnguTIp215cq7KywKdNfkIjNFgze_Z5d8jkfzwWsw_XiZDJ6mgZVCbQKVQF_1uTAWAI20aZKmKhYZV1YiSpkxTKMEeyBkmmbQj02U9GwSSWMxVrESXfJwzN2aKjNVrpd16yrfqJe73O4SjYcxQAADz94f2ZWr161_0gnmPFKiL6WSnoIjZV3dNA4zvXKL0ri9ZqAPG-vB2_tIH2I1CO039go7Ko1HqxzdKfgf5-635ruu8rXX_nokZ8J_EYgfYLyIlQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Liu, Houlin</creator><creator>Wang, Kai</creator><creator>Yuan, Shouqi</creator><creator>Tan, Minggao</creator><creator>Wang, Yong</creator><creator>Ru, Weimin</creator><general>Chinese Mechanical Engineering Society</general><general>Springer Nature B.V</general><general>Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120501</creationdate><title>3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller</title><author>Liu, Houlin ; Wang, Kai ; Yuan, Shouqi ; Tan, Minggao ; Wang, Yong ; Ru, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9b079723ac00ea4cdbdd983f29c4ee44f1ed5be6034ddf078a5b6cb54ace89893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>C (programming language)</topic><topic>Design optimization</topic><topic>Electrical Machines and Networks</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fiber optics</topic><topic>Flow characteristics</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Impellers</topic><topic>Instrumentation</topic><topic>Internal flow</topic><topic>Low flow</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Optical fibers</topic><topic>Particle image velocimetry</topic><topic>PIV测试</topic><topic>Power Electronics</topic><topic>Processes</topic><topic>Suction</topic><topic>Synchronism</topic><topic>Theoretical and Applied Mechanics</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><topic>Visual C</topic><topic>Visual programming languages</topic><topic>三维粒子</topic><topic>内部流动</topic><topic>双叶片泵</topic><topic>叶轮</topic><topic>图像测试</topic><topic>粒子图像测速</topic><topic>设计条件</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Houlin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Yuan, Shouqi</creatorcontrib><creatorcontrib>Tan, Minggao</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Ru, Weimin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Houlin</au><au>Wang, Kai</au><au>Yuan, Shouqi</au><au>Tan, Minggao</au><au>Wang, Yong</au><au>Ru, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller</atitle><jtitle>Chinese journal of mechanical engineering</jtitle><stitle>Chin. J. Mech. Eng</stitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>25</volume><issue>3</issue><spage>491</spage><epage>497</epage><pages>491-497</pages><issn>1000-9345</issn><eissn>2192-8258</eissn><abstract>The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society</pub><doi>10.3901/cjme.2012.03.491</doi><tpages>7</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9345 |
ispartof | Chinese journal of mechanical engineering, 2012-05, Vol.25 (3), p.491-497 |
issn | 1000-9345 2192-8258 |
language | eng |
recordid | cdi_wanfang_journals_jxgcxb_e201203010 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | C (programming language) Design optimization Electrical Machines and Networks Electronics and Microelectronics Engineering Engineering Thermodynamics Fiber optics Flow characteristics Flow velocity Fluid flow Heat and Mass Transfer Impellers Instrumentation Internal flow Low flow Machines Manufacturing Mechanical Engineering Optical fibers Particle image velocimetry PIV测试 Power Electronics Processes Suction Synchronism Theoretical and Applied Mechanics Velocity Velocity distribution Velocity measurement Visual C Visual programming languages 三维粒子 内部流动 双叶片泵 叶轮 图像测试 粒子图像测速 设计条件 |
title | 3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Particle%20Image%20Velocimetry%20Test%20of%20Inner%20Flow%20in%20a%20Double%20Blade%20Pump%20Impeller&rft.jtitle=Chinese%20journal%20of%20mechanical%20engineering&rft.au=Liu,%20Houlin&rft.date=2012-05-01&rft.volume=25&rft.issue=3&rft.spage=491&rft.epage=497&rft.pages=491-497&rft.issn=1000-9345&rft.eissn=2192-8258&rft_id=info:doi/10.3901/cjme.2012.03.491&rft_dat=%3Cwanfang_jour_proqu%3Ejxgcxb_e201203010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259374494&rft_id=info:pmid/&rft_cqvip_id=42133450&rft_wanfj_id=jxgcxb_e201203010&rfr_iscdi=true |