FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE

Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of mechanical engineering 2007-10, Vol.20 (5), p.92-95
1. Verfasser: LIU, Guanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 5
container_start_page 92
container_title Chinese journal of mechanical engineering
container_volume 20
creator LIU, Guanjun
description Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.
doi_str_mv 10.3901/CJME.2007.05.092
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jxgcxb_e200705019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>25771847</cqvip_id><wanfj_id>jxgcxb_e200705019</wanfj_id><sourcerecordid>jxgcxb_e200705019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2509-e857e65f448bd9a5132636602fdd9a8db1357b993a3b72a76cf3ffb8b837b0aa3</originalsourceid><addsrcrecordid>eNotkM2P0zAQxS0EEmXhztHigMQhZWzXX8eQZLeBNon6sVfLTu3S0k12k61Y_ntcdU-jp3nvzeiH0GcCU6aBfM9-LospBZBT4FPQ9A2aUKJpoihXb9GEAECi2Yy_Rx_G8RiVIERNUHObbhcbnJfpXVWvyzVOm2ZVp9kc_0jXRY7rCs_LPC8qvExXv-p7vKzzYoHTKsfrbdPUqw2-L7JNvYr7bF5WxUf0LtjT6D-9zhu0vS022TxZ1Hdlli6SlnLQiVdcesHDbKbcTltOGBVMCKBhF6XaOcK4dFozy5ykVoo2sBCccopJB9ayG_Tt2vvXdsF2e3Psz0MXL5rjy759ccZfYAAHoqP369X7OPRPZz8-m4fD2PrTyXa-P4-GEcmFEDQa4Wpsh34cBx_M43B4sMM_Q8BcMJsLZnNpNsBNxBwjX14jv_tu_3SInzjb_gmHkzeUS0nUTLL_qDly-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31756662</pqid></control><display><type>article</type><title>FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>LIU, Guanjun</creator><creatorcontrib>LIU, Guanjun</creatorcontrib><description>Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.</description><identifier>ISSN: 1000-9345</identifier><identifier>EISSN: 2192-8258</identifier><identifier>DOI: 10.3901/CJME.2007.05.092</identifier><language>eng</language><publisher>College of Mechatronics Engineering and Automation,National University of Defense Technology,Changsha 410073, China</publisher><subject>技术性能 ; 支持矢量 ; 机械诊断 ; 模型设计</subject><ispartof>Chinese journal of mechanical engineering, 2007-10, Vol.20 (5), p.92-95</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2509-e857e65f448bd9a5132636602fdd9a8db1357b993a3b72a76cf3ffb8b837b0aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85891X/85891X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>LIU, Guanjun</creatorcontrib><title>FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE</title><title>Chinese journal of mechanical engineering</title><addtitle>Chinese Journal of Mechanical Engineering</addtitle><description>Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.</description><subject>技术性能</subject><subject>支持矢量</subject><subject>机械诊断</subject><subject>模型设计</subject><issn>1000-9345</issn><issn>2192-8258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkM2P0zAQxS0EEmXhztHigMQhZWzXX8eQZLeBNon6sVfLTu3S0k12k61Y_ntcdU-jp3nvzeiH0GcCU6aBfM9-LospBZBT4FPQ9A2aUKJpoihXb9GEAECi2Yy_Rx_G8RiVIERNUHObbhcbnJfpXVWvyzVOm2ZVp9kc_0jXRY7rCs_LPC8qvExXv-p7vKzzYoHTKsfrbdPUqw2-L7JNvYr7bF5WxUf0LtjT6D-9zhu0vS022TxZ1Hdlli6SlnLQiVdcesHDbKbcTltOGBVMCKBhF6XaOcK4dFozy5ykVoo2sBCccopJB9ayG_Tt2vvXdsF2e3Psz0MXL5rjy759ccZfYAAHoqP369X7OPRPZz8-m4fD2PrTyXa-P4-GEcmFEDQa4Wpsh34cBx_M43B4sMM_Q8BcMJsLZnNpNsBNxBwjX14jv_tu_3SInzjb_gmHkzeUS0nUTLL_qDly-A</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>LIU, Guanjun</creator><general>College of Mechatronics Engineering and Automation,National University of Defense Technology,Changsha 410073, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200710</creationdate><title>FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE</title><author>LIU, Guanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2509-e857e65f448bd9a5132636602fdd9a8db1357b993a3b72a76cf3ffb8b837b0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>技术性能</topic><topic>支持矢量</topic><topic>机械诊断</topic><topic>模型设计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Guanjun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Guanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE</atitle><jtitle>Chinese journal of mechanical engineering</jtitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><date>2007-10</date><risdate>2007</risdate><volume>20</volume><issue>5</issue><spage>92</spage><epage>95</epage><pages>92-95</pages><issn>1000-9345</issn><eissn>2192-8258</eissn><abstract>Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.</abstract><pub>College of Mechatronics Engineering and Automation,National University of Defense Technology,Changsha 410073, China</pub><doi>10.3901/CJME.2007.05.092</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-9345
ispartof Chinese journal of mechanical engineering, 2007-10, Vol.20 (5), p.92-95
issn 1000-9345
2192-8258
language eng
recordid cdi_wanfang_journals_jxgcxb_e200705019
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 技术性能
支持矢量
机械诊断
模型设计
title FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAULT%20DIAGNOSIS%20APPROACH%20BASED%20ON%20HIDDEN%20MARKOV%20MODEL%20AND%20SUPPORT%20VECTOR%20MACHINE&rft.jtitle=Chinese%20journal%20of%20mechanical%20engineering&rft.au=LIU,%20Guanjun&rft.date=2007-10&rft.volume=20&rft.issue=5&rft.spage=92&rft.epage=95&rft.pages=92-95&rft.issn=1000-9345&rft.eissn=2192-8258&rft_id=info:doi/10.3901/CJME.2007.05.092&rft_dat=%3Cwanfang_jour_proqu%3Ejxgcxb_e200705019%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31756662&rft_id=info:pmid/&rft_cqvip_id=25771847&rft_wanfj_id=jxgcxb_e200705019&rfr_iscdi=true