Modeling of dynamic recrystallization of Ti6Al4V alloy using a cellular automaton approach

A cellular automaton (CA) model is established to simulate dynamic recrystallization (DRX) in the β single-phase field of Ti6Al4V alloy, and the kinetics during DRX processing has been analyzed. The model employed considers the influences of dynamic recovery, nucleation rate, strain rate and disloca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta metallurgica sinica : English letters 2008-08, Vol.21 (4), p.260-268
Hauptverfasser: Zhao, J.W., Ding, H., Zhao, W.J., Cao, F.R., Hou, H.L., Li, Z.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A cellular automaton (CA) model is established to simulate dynamic recrystallization (DRX) in the β single-phase field of Ti6Al4V alloy, and the kinetics during DRX processing has been analyzed. The model employed considers the influences of dynamic recovery, nucleation rate, strain rate and dislocation density on DRX, and practical deformation parameters, such as temperature, strain and strain rate on DRX have been considered in the simulation. The simulated DRX grain size and DRX grain shape agree well with the experimental results, which shows the availability and feasibility of the cellular automaton method for the simulation of DRX. The result of kinetics analysis of DRX reveals that the Avrami exponent is variable ranging from 2.4 to 2.9, which increases with the increase of strain rate.
ISSN:1006-7191
2194-1289
DOI:10.1016/S1006-7191(08)60047-2