Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node
Semi-Markov conditional random fields (Semi-CRFs) have been successfully utilized in many segmentation problems, including Chinese word segmentation (CWS). The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences. Despite it...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2020-10, Vol.35 (5), p.1115-1126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1126 |
---|---|
container_issue | 5 |
container_start_page | 1115 |
container_title | Journal of computer science and technology |
container_volume | 35 |
creator | Qun, Nuo Yan, Hang Qiu, Xi-Peng Huang, Xuan-Jing |
description | Semi-Markov conditional random fields (Semi-CRFs) have been successfully utilized in many segmentation problems, including Chinese word segmentation (CWS). The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences. Despite its theoretical advantage, Semi-CRF is still not the best choice for CWS because its computation complexity is quadratic to the sentence’s length. In this paper, we propose a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity. Specifically, we first adopt a bi-directional long short-term memory (BiLSTM) on character level to model the context information, and then use simple but effective fusion layer to represent the segment information. Besides, to model arbitrarily long segments within linear time complexity, we also propose a new model named Semi-CRF-Relay. The direct modeling of segments makes the combination with word features easy and the CWS performance can be enhanced merely by adding publicly available pre-trained word embeddings. Experiments on four popular CWS datasets show the effectiveness of our proposed methods. The source codes and pre-trained embeddings of this paper are available on
https://github.com/fastnlp/fastNLP/
. |
doi_str_mv | 10.1007/s11390-020-9576-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e202005009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718450883</galeid><wanfj_id>jsjkxjsxb_e202005009</wanfj_id><sourcerecordid>jsjkxjsxb_e202005009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3079-fd5379779bec868fdbf4a78518a8007fe2b84b31839b4df7afcc1b346671652f3</originalsourceid><addsrcrecordid>eNp1kV9PwyAUxRujifPPB_CtiY9avRQo8ODDXJyaTE2cxkdCW9ioG1Xo3Pz2YmqyJ0MC5PI73HNzkuQEwQUCYJcBISwggxwyQVmRkZ1kgHgBGWFE7MY7QHyJ235yEEIDgBkQMkiuRnPrdNDpW-vrdKpnS-061dnWpV9Wpdd2Mn15OJvqpc1Gz-N0bbt5-qwX6jt9bGt9lOwZtQj6-O88TF7HNy-ju2zydHs_Gk6yCgMTmakpZoIxUeqKF9zUpSGKcYq44tG80XnJSYkRx6IktWHKVBUqMSkKhgqaG3yYnPf_rpUzys1k0668ix1lE5r3TRM2pdR5HB4ogIj4aY9_-PZzpUO35XOBOIWC0DxSFz01UwstrTNt51UVVx2nrVqnjY31IUOcUOAcRwHqBZVvQ_DayA9vl8p_SwTyNwXZpyCjEfmbgiRRk_eaEFk3035r5X_RD3txhsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918506452</pqid></control><display><type>article</type><title>Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qun, Nuo ; Yan, Hang ; Qiu, Xi-Peng ; Huang, Xuan-Jing</creator><creatorcontrib>Qun, Nuo ; Yan, Hang ; Qiu, Xi-Peng ; Huang, Xuan-Jing</creatorcontrib><description>Semi-Markov conditional random fields (Semi-CRFs) have been successfully utilized in many segmentation problems, including Chinese word segmentation (CWS). The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences. Despite its theoretical advantage, Semi-CRF is still not the best choice for CWS because its computation complexity is quadratic to the sentence’s length. In this paper, we propose a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity. Specifically, we first adopt a bi-directional long short-term memory (BiLSTM) on character level to model the context information, and then use simple but effective fusion layer to represent the segment information. Besides, to model arbitrarily long segments within linear time complexity, we also propose a new model named Semi-CRF-Relay. The direct modeling of segments makes the combination with word features easy and the CWS performance can be enhanced merely by adding publicly available pre-trained word embeddings. Experiments on four popular CWS datasets show the effectiveness of our proposed methods. The source codes and pre-trained embeddings of this paper are available on
https://github.com/fastnlp/fastNLP/
.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-020-9576-4</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Analysis ; Artificial Intelligence ; Complexity ; Computation ; Computational linguistics ; Computer Science ; Conditional random fields ; Data Structures and Information Theory ; Datasets ; Deep learning ; Information Systems Applications (incl.Internet) ; Labeling ; Language processing ; Natural language interfaces ; Neural networks ; Regular Paper ; Relay ; Segmentation ; Segments ; Software Engineering ; Theory of Computation ; Words (language)</subject><ispartof>Journal of computer science and technology, 2020-10, Vol.35 (5), p.1115-1126</ispartof><rights>Institute of Computing Technology, Chinese Academy of Sciences 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Institute of Computing Technology, Chinese Academy of Sciences 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3079-fd5379779bec868fdbf4a78518a8007fe2b84b31839b4df7afcc1b346671652f3</citedby><cites>FETCH-LOGICAL-c3079-fd5379779bec868fdbf4a78518a8007fe2b84b31839b4df7afcc1b346671652f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkxjsxb-e/jsjkxjsxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-020-9576-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-020-9576-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Qun, Nuo</creatorcontrib><creatorcontrib>Yan, Hang</creatorcontrib><creatorcontrib>Qiu, Xi-Peng</creatorcontrib><creatorcontrib>Huang, Xuan-Jing</creatorcontrib><title>Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>Semi-Markov conditional random fields (Semi-CRFs) have been successfully utilized in many segmentation problems, including Chinese word segmentation (CWS). The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences. Despite its theoretical advantage, Semi-CRF is still not the best choice for CWS because its computation complexity is quadratic to the sentence’s length. In this paper, we propose a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity. Specifically, we first adopt a bi-directional long short-term memory (BiLSTM) on character level to model the context information, and then use simple but effective fusion layer to represent the segment information. Besides, to model arbitrarily long segments within linear time complexity, we also propose a new model named Semi-CRF-Relay. The direct modeling of segments makes the combination with word features easy and the CWS performance can be enhanced merely by adding publicly available pre-trained word embeddings. Experiments on four popular CWS datasets show the effectiveness of our proposed methods. The source codes and pre-trained embeddings of this paper are available on
https://github.com/fastnlp/fastNLP/
.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Conditional random fields</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Labeling</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Regular Paper</subject><subject>Relay</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Software Engineering</subject><subject>Theory of Computation</subject><subject>Words (language)</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV9PwyAUxRujifPPB_CtiY9avRQo8ODDXJyaTE2cxkdCW9ioG1Xo3Pz2YmqyJ0MC5PI73HNzkuQEwQUCYJcBISwggxwyQVmRkZ1kgHgBGWFE7MY7QHyJ235yEEIDgBkQMkiuRnPrdNDpW-vrdKpnS-061dnWpV9Wpdd2Mn15OJvqpc1Gz-N0bbt5-qwX6jt9bGt9lOwZtQj6-O88TF7HNy-ju2zydHs_Gk6yCgMTmakpZoIxUeqKF9zUpSGKcYq44tG80XnJSYkRx6IktWHKVBUqMSkKhgqaG3yYnPf_rpUzys1k0668ix1lE5r3TRM2pdR5HB4ogIj4aY9_-PZzpUO35XOBOIWC0DxSFz01UwstrTNt51UVVx2nrVqnjY31IUOcUOAcRwHqBZVvQ_DayA9vl8p_SwTyNwXZpyCjEfmbgiRRk_eaEFk3035r5X_RD3txhsQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Qun, Nuo</creator><creator>Yan, Hang</creator><creator>Qiu, Xi-Peng</creator><creator>Huang, Xuan-Jing</creator><general>Springer Singapore</general><general>Springer</general><general>Springer Nature B.V</general><general>Shanghai Key Laboratory of Intelligent Information Processing,Fudan University,Shanghai 200433,China</general><general>School of Computer Science,Fudan University,Shanghai 200433,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20201001</creationdate><title>Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node</title><author>Qun, Nuo ; Yan, Hang ; Qiu, Xi-Peng ; Huang, Xuan-Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3079-fd5379779bec868fdbf4a78518a8007fe2b84b31839b4df7afcc1b346671652f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Conditional random fields</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Labeling</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Regular Paper</topic><topic>Relay</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Software Engineering</topic><topic>Theory of Computation</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qun, Nuo</creatorcontrib><creatorcontrib>Yan, Hang</creatorcontrib><creatorcontrib>Qiu, Xi-Peng</creatorcontrib><creatorcontrib>Huang, Xuan-Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qun, Nuo</au><au>Yan, Hang</au><au>Qiu, Xi-Peng</au><au>Huang, Xuan-Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>35</volume><issue>5</issue><spage>1115</spage><epage>1126</epage><pages>1115-1126</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Semi-Markov conditional random fields (Semi-CRFs) have been successfully utilized in many segmentation problems, including Chinese word segmentation (CWS). The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences. Despite its theoretical advantage, Semi-CRF is still not the best choice for CWS because its computation complexity is quadratic to the sentence’s length. In this paper, we propose a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity. Specifically, we first adopt a bi-directional long short-term memory (BiLSTM) on character level to model the context information, and then use simple but effective fusion layer to represent the segment information. Besides, to model arbitrarily long segments within linear time complexity, we also propose a new model named Semi-CRF-Relay. The direct modeling of segments makes the combination with word features easy and the CWS performance can be enhanced merely by adding publicly available pre-trained word embeddings. Experiments on four popular CWS datasets show the effectiveness of our proposed methods. The source codes and pre-trained embeddings of this paper are available on
https://github.com/fastnlp/fastNLP/
.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s11390-020-9576-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2020-10, Vol.35 (5), p.1115-1126 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_wanfang_journals_jsjkxjsxb_e202005009 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Artificial Intelligence Complexity Computation Computational linguistics Computer Science Conditional random fields Data Structures and Information Theory Datasets Deep learning Information Systems Applications (incl.Internet) Labeling Language processing Natural language interfaces Neural networks Regular Paper Relay Segmentation Segments Software Engineering Theory of Computation Words (language) |
title | Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Word%20Segmentation%20via%20BiLSTM+Semi-CRF%20with%20Relay%20Node&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Qun,%20Nuo&rft.date=2020-10-01&rft.volume=35&rft.issue=5&rft.spage=1115&rft.epage=1126&rft.pages=1115-1126&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-020-9576-4&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e202005009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918506452&rft_id=info:pmid/&rft_galeid=A718450883&rft_wanfj_id=jsjkxjsxb_e202005009&rfr_iscdi=true |