Threshold Extraction Framework for Software Metrics
Software metrics are used to measure different attributes of software. To practically measure software attributes using these metrics, metric thresholds are needed. Many researchers attempted to identify these thresholds based on personal experiences. However, the resulted experience-based threshold...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2019-09, Vol.34 (5), p.1063-1078 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 5 |
container_start_page | 1063 |
container_title | Journal of computer science and technology |
container_volume | 34 |
creator | Alqmase, Mohammed Alshayeb, Mohammad Ghouti, Lahouari |
description | Software metrics are used to measure different attributes of software. To practically measure software attributes using these metrics, metric thresholds are needed. Many researchers attempted to identify these thresholds based on personal experiences. However, the resulted experience-based thresholds cannot be generalized due to the variability in personal experiences and the subjectivity of opinions. The goal of this paper is to propose an automated clustering framework based on the expectation maximization (EM) algorithm where clusters are generated using a simplified 3-metric set (LOC, LCOM, and CBO). Given these clusters, different threshold levels for software metrics are systematically determined such that each threshold reflects a specific level of software quality. The proposed framework comprises two major steps: the clustering step where the software quality historical dataset is decomposed into a fixed set of clusters using the EM algorithm, and the threshold extraction step where thresholds, specific to each software metric in the resulting clusters, are estimated using statistical measures such as the mean (μ) and the standard deviation (σ) of each software metric in each cluster. The paper’s findings highlight the capability of EM-based clustering, using a minimum metric set, to group software quality datasets according to different quality levels. |
doi_str_mv | 10.1007/s11390-019-1960-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e201905008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719819367</galeid><wanfj_id>jsjkxjsxb_e201905008</wanfj_id><sourcerecordid>jsjkxjsxb_e201905008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-8baa07f9f59701519b712e950564f59b10a97d90ed0a5b0a976bd3548a53358f3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuCt3aeNE3TXI6xqaB44bwOaZts7bZmJh2b_95TKuxKAsnJ4XnPx0vIPYUJBRBPgVImIQYqYyoziLMLMqI5BqlI5SXGABBLvK7JTQgNABOQpiPClmtvwtptq2h-6rwuu9q10cLrnTk6v4ms89Gns91RexO9m87XZbglV1Zvg7n7e8fkazFfzl7it4_n19n0LS7TlHdxXmgNwkrLpQDKqSwETYzkwLMUcwUFLUUlwVSgedF_sqJiPM01Z4znlo3J41D3qFur25Vq3MG32FE1odmcmnAqlElwZeAAOeIPA7737vtgQnfmE4leJFgakJoM1Epvjapb6_qt8VRmV5euNbbG_FRQmVPJMoECOghK70Lwxqq9r3fa_ygKqvdeDd4rHET13qsMNcmgCci2K-PPo_wv-gVKwIRh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918625480</pqid></control><display><type>article</type><title>Threshold Extraction Framework for Software Metrics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alqmase, Mohammed ; Alshayeb, Mohammad ; Ghouti, Lahouari</creator><creatorcontrib>Alqmase, Mohammed ; Alshayeb, Mohammad ; Ghouti, Lahouari</creatorcontrib><description>Software metrics are used to measure different attributes of software. To practically measure software attributes using these metrics, metric thresholds are needed. Many researchers attempted to identify these thresholds based on personal experiences. However, the resulted experience-based thresholds cannot be generalized due to the variability in personal experiences and the subjectivity of opinions. The goal of this paper is to propose an automated clustering framework based on the expectation maximization (EM) algorithm where clusters are generated using a simplified 3-metric set (LOC, LCOM, and CBO). Given these clusters, different threshold levels for software metrics are systematically determined such that each threshold reflects a specific level of software quality. The proposed framework comprises two major steps: the clustering step where the software quality historical dataset is decomposed into a fixed set of clusters using the EM algorithm, and the threshold extraction step where thresholds, specific to each software metric in the resulting clusters, are estimated using statistical measures such as the mean (μ) and the standard deviation (σ) of each software metric in each cluster. The paper’s findings highlight the capability of EM-based clustering, using a minimum metric set, to group software quality datasets according to different quality levels.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-019-1960-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Computer Science ; Data Structures and Information Theory ; Datasets ; Information Systems Applications (incl.Internet) ; Regular Paper ; Software ; Software Engineering ; Software quality ; Theory of Computation ; Thresholds</subject><ispartof>Journal of computer science and technology, 2019-09, Vol.34 (5), p.1063-1078</ispartof><rights>Springer Science+Business Media, LLC & Science Press, China 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC & Science Press, China 2019.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-8baa07f9f59701519b712e950564f59b10a97d90ed0a5b0a976bd3548a53358f3</citedby><cites>FETCH-LOGICAL-c445t-8baa07f9f59701519b712e950564f59b10a97d90ed0a5b0a976bd3548a53358f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkxjsxb-e/jsjkxjsxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-019-1960-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-019-1960-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alqmase, Mohammed</creatorcontrib><creatorcontrib>Alshayeb, Mohammad</creatorcontrib><creatorcontrib>Ghouti, Lahouari</creatorcontrib><title>Threshold Extraction Framework for Software Metrics</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>Software metrics are used to measure different attributes of software. To practically measure software attributes using these metrics, metric thresholds are needed. Many researchers attempted to identify these thresholds based on personal experiences. However, the resulted experience-based thresholds cannot be generalized due to the variability in personal experiences and the subjectivity of opinions. The goal of this paper is to propose an automated clustering framework based on the expectation maximization (EM) algorithm where clusters are generated using a simplified 3-metric set (LOC, LCOM, and CBO). Given these clusters, different threshold levels for software metrics are systematically determined such that each threshold reflects a specific level of software quality. The proposed framework comprises two major steps: the clustering step where the software quality historical dataset is decomposed into a fixed set of clusters using the EM algorithm, and the threshold extraction step where thresholds, specific to each software metric in the resulting clusters, are estimated using statistical measures such as the mean (μ) and the standard deviation (σ) of each software metric in each cluster. The paper’s findings highlight the capability of EM-based clustering, using a minimum metric set, to group software quality datasets according to different quality levels.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Regular Paper</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Software quality</subject><subject>Theory of Computation</subject><subject>Thresholds</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuCt3aeNE3TXI6xqaB44bwOaZts7bZmJh2b_95TKuxKAsnJ4XnPx0vIPYUJBRBPgVImIQYqYyoziLMLMqI5BqlI5SXGABBLvK7JTQgNABOQpiPClmtvwtptq2h-6rwuu9q10cLrnTk6v4ms89Gns91RexO9m87XZbglV1Zvg7n7e8fkazFfzl7it4_n19n0LS7TlHdxXmgNwkrLpQDKqSwETYzkwLMUcwUFLUUlwVSgedF_sqJiPM01Z4znlo3J41D3qFur25Vq3MG32FE1odmcmnAqlElwZeAAOeIPA7737vtgQnfmE4leJFgakJoM1Epvjapb6_qt8VRmV5euNbbG_FRQmVPJMoECOghK70Lwxqq9r3fa_ygKqvdeDd4rHET13qsMNcmgCci2K-PPo_wv-gVKwIRh</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Alqmase, Mohammed</creator><creator>Alshayeb, Mohammad</creator><creator>Ghouti, Lahouari</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Information and Computer Science Department, King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190901</creationdate><title>Threshold Extraction Framework for Software Metrics</title><author>Alqmase, Mohammed ; Alshayeb, Mohammad ; Ghouti, Lahouari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-8baa07f9f59701519b712e950564f59b10a97d90ed0a5b0a976bd3548a53358f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Regular Paper</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Software quality</topic><topic>Theory of Computation</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alqmase, Mohammed</creatorcontrib><creatorcontrib>Alshayeb, Mohammad</creatorcontrib><creatorcontrib>Ghouti, Lahouari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alqmase, Mohammed</au><au>Alshayeb, Mohammad</au><au>Ghouti, Lahouari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold Extraction Framework for Software Metrics</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>34</volume><issue>5</issue><spage>1063</spage><epage>1078</epage><pages>1063-1078</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Software metrics are used to measure different attributes of software. To practically measure software attributes using these metrics, metric thresholds are needed. Many researchers attempted to identify these thresholds based on personal experiences. However, the resulted experience-based thresholds cannot be generalized due to the variability in personal experiences and the subjectivity of opinions. The goal of this paper is to propose an automated clustering framework based on the expectation maximization (EM) algorithm where clusters are generated using a simplified 3-metric set (LOC, LCOM, and CBO). Given these clusters, different threshold levels for software metrics are systematically determined such that each threshold reflects a specific level of software quality. The proposed framework comprises two major steps: the clustering step where the software quality historical dataset is decomposed into a fixed set of clusters using the EM algorithm, and the threshold extraction step where thresholds, specific to each software metric in the resulting clusters, are estimated using statistical measures such as the mean (μ) and the standard deviation (σ) of each software metric in each cluster. The paper’s findings highlight the capability of EM-based clustering, using a minimum metric set, to group software quality datasets according to different quality levels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11390-019-1960-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2019-09, Vol.34 (5), p.1063-1078 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_wanfang_journals_jsjkxjsxb_e201905008 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Clustering Computer Science Data Structures and Information Theory Datasets Information Systems Applications (incl.Internet) Regular Paper Software Software Engineering Software quality Theory of Computation Thresholds |
title | Threshold Extraction Framework for Software Metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20Extraction%20Framework%20for%20Software%20Metrics&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Alqmase,%20Mohammed&rft.date=2019-09-01&rft.volume=34&rft.issue=5&rft.spage=1063&rft.epage=1078&rft.pages=1063-1078&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-019-1960-6&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e201905008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918625480&rft_id=info:pmid/&rft_galeid=A719819367&rft_wanfj_id=jsjkxjsxb_e201905008&rfr_iscdi=true |