Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem

The p-center problem consists of choosing a subset of vertices in an undirected graph as facilities in order to minimize the maximum distance between a client and its closest facility. This paper presents a greedy randomized adaptive search procedure with path-relinking (GRASP/PR) algorithm for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer science and technology 2017-11, Vol.32 (6), p.1319-1334
Hauptverfasser: Yin, Ai-Hua, Zhou, Tao-Qing, Ding, Jun-Wen, Zhao, Qing-Jie, Lv, Zhi-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 6
container_start_page 1319
container_title Journal of computer science and technology
container_volume 32
creator Yin, Ai-Hua
Zhou, Tao-Qing
Ding, Jun-Wen
Zhao, Qing-Jie
Lv, Zhi-Peng
description The p-center problem consists of choosing a subset of vertices in an undirected graph as facilities in order to minimize the maximum distance between a client and its closest facility. This paper presents a greedy randomized adaptive search procedure with path-relinking (GRASP/PR) algorithm for the p-center problem, which combines both GRASP and path-relinking. Each iteration of GRASP/PR consists of the construction of a randomized greedy solution, followed by a tabu search procedure. The resulting solution is combined with one of the elite solutions by path-relinking, which consists in exploring trajectories that connect high-quality solutions. Experiments show that GRASP/PR is competitive with the state-of-the-art algorithms in the literature in terms of both solution quality and computational efficiency. Specifically, it virtually improves the previous best known results for 10 out of 40 large instances while matching the best known results for others.
doi_str_mv 10.1007/s11390-017-1802-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e201706022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674266058</cqvip_id><wanfj_id>jsjkxjsxb_e201706022</wanfj_id><sourcerecordid>jsjkxjsxb_e201706022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1efc87d24821009539ebdc645401903dd0d371ec7f8673607cd15918c86083293</originalsourceid><addsrcrecordid>eNp9kUtPGzEUhUeISjzaH9Cd1W4xvX6MH0sUAa2EREULW2ti30lmSDzBnpTQX19Hg9qu2Pghfecc-56q-sjgnAHoL5kxYYEC05QZ4FQcVMfMKKBSS3tYzgBAbVmOqpOcewChQcrjyl0nxPBC7poYhnX3GwO5CM1m7H4h-YFN8kvyPQ0ewzYhee7Gcm3GJb3DVRcfu7gg7ZDIuETygGnEHdnQGcYR0141X-H6ffWubVYZP7zup9X91eXP2Vd6c3v9bXZxQ70EM1KGrTc6cGl4eamthcV58ErWEpgFEQIEoRl63RqlhQLtA6stM7580QhuxWl1Nvk-N7Ft4sL1wzbFkuj63D_u-rybO-RlPKCA84J_nvBNGp62mMd_PC-2ipfo-i2KWS2MtGWIhWIT5dOQc8LWbVK3btKLY-D25bipHFfS3b4cJ4qGT5pc2LjA9J_zG6JPr0HLIS6eiu5vktKSKwW1EX8ACAiacQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973849704</pqid></control><display><type>article</type><title>Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem</title><source>SpringerNature Journals</source><creator>Yin, Ai-Hua ; Zhou, Tao-Qing ; Ding, Jun-Wen ; Zhao, Qing-Jie ; Lv, Zhi-Peng</creator><creatorcontrib>Yin, Ai-Hua ; Zhou, Tao-Qing ; Ding, Jun-Wen ; Zhao, Qing-Jie ; Lv, Zhi-Peng</creatorcontrib><description>The p-center problem consists of choosing a subset of vertices in an undirected graph as facilities in order to minimize the maximum distance between a client and its closest facility. This paper presents a greedy randomized adaptive search procedure with path-relinking (GRASP/PR) algorithm for the p-center problem, which combines both GRASP and path-relinking. Each iteration of GRASP/PR consists of the construction of a randomized greedy solution, followed by a tabu search procedure. The resulting solution is combined with one of the elite solutions by path-relinking, which consists in exploring trajectories that connect high-quality solutions. Experiments show that GRASP/PR is competitive with the state-of-the-art algorithms in the literature in terms of both solution quality and computational efficiency. Specifically, it virtually improves the previous best known results for 10 out of 40 large instances while matching the best known results for others.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-017-1802-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive search techniques ; Algorithms ; Apexes ; Artificial Intelligence ; Computer Science ; Computing time ; Data Structures and Information Theory ; Experiments ; Graph theory ; Heuristic ; Information Systems Applications (incl.Internet) ; Iterative methods ; Job shops ; Libraries ; Linear programming ; Methods ; Production scheduling ; Randomization ; Regular Paper ; Searching ; Software Engineering ; Tabu search ; Theory of Computation</subject><ispartof>Journal of computer science and technology, 2017-11, Vol.32 (6), p.1319-1334</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Journal of Computer Science and Technology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1efc87d24821009539ebdc645401903dd0d371ec7f8673607cd15918c86083293</citedby><cites>FETCH-LOGICAL-c408t-1efc87d24821009539ebdc645401903dd0d371ec7f8673607cd15918c86083293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85226X/85226X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-017-1802-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-017-1802-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Yin, Ai-Hua</creatorcontrib><creatorcontrib>Zhou, Tao-Qing</creatorcontrib><creatorcontrib>Ding, Jun-Wen</creatorcontrib><creatorcontrib>Zhao, Qing-Jie</creatorcontrib><creatorcontrib>Lv, Zhi-Peng</creatorcontrib><title>Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><addtitle>Journal of Computer Science and Technology</addtitle><description>The p-center problem consists of choosing a subset of vertices in an undirected graph as facilities in order to minimize the maximum distance between a client and its closest facility. This paper presents a greedy randomized adaptive search procedure with path-relinking (GRASP/PR) algorithm for the p-center problem, which combines both GRASP and path-relinking. Each iteration of GRASP/PR consists of the construction of a randomized greedy solution, followed by a tabu search procedure. The resulting solution is combined with one of the elite solutions by path-relinking, which consists in exploring trajectories that connect high-quality solutions. Experiments show that GRASP/PR is competitive with the state-of-the-art algorithms in the literature in terms of both solution quality and computational efficiency. Specifically, it virtually improves the previous best known results for 10 out of 40 large instances while matching the best known results for others.</description><subject>Adaptive search techniques</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Data Structures and Information Theory</subject><subject>Experiments</subject><subject>Graph theory</subject><subject>Heuristic</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Iterative methods</subject><subject>Job shops</subject><subject>Libraries</subject><subject>Linear programming</subject><subject>Methods</subject><subject>Production scheduling</subject><subject>Randomization</subject><subject>Regular Paper</subject><subject>Searching</subject><subject>Software Engineering</subject><subject>Tabu search</subject><subject>Theory of Computation</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPGzEUhUeISjzaH9Cd1W4xvX6MH0sUAa2EREULW2ti30lmSDzBnpTQX19Hg9qu2Pghfecc-56q-sjgnAHoL5kxYYEC05QZ4FQcVMfMKKBSS3tYzgBAbVmOqpOcewChQcrjyl0nxPBC7poYhnX3GwO5CM1m7H4h-YFN8kvyPQ0ewzYhee7Gcm3GJb3DVRcfu7gg7ZDIuETygGnEHdnQGcYR0141X-H6ffWubVYZP7zup9X91eXP2Vd6c3v9bXZxQ70EM1KGrTc6cGl4eamthcV58ErWEpgFEQIEoRl63RqlhQLtA6stM7580QhuxWl1Nvk-N7Ft4sL1wzbFkuj63D_u-rybO-RlPKCA84J_nvBNGp62mMd_PC-2ipfo-i2KWS2MtGWIhWIT5dOQc8LWbVK3btKLY-D25bipHFfS3b4cJ4qGT5pc2LjA9J_zG6JPr0HLIS6eiu5vktKSKwW1EX8ACAiacQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Yin, Ai-Hua</creator><creator>Zhou, Tao-Qing</creator><creator>Ding, Jun-Wen</creator><creator>Zhao, Qing-Jie</creator><creator>Lv, Zhi-Peng</creator><general>Springer US</general><general>Springer Nature B.V</general><general>School of Software and Communication Engineering, Jiangxi University of Finance and Economics Nanchang 330013, China%School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China</general><general>Department of Computer Science, School of Information Engineering, Zhejiang Agriculture and Forestry University Hangzhou 311300, China%School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20171101</creationdate><title>Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem</title><author>Yin, Ai-Hua ; Zhou, Tao-Qing ; Ding, Jun-Wen ; Zhao, Qing-Jie ; Lv, Zhi-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1efc87d24821009539ebdc645401903dd0d371ec7f8673607cd15918c86083293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive search techniques</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Data Structures and Information Theory</topic><topic>Experiments</topic><topic>Graph theory</topic><topic>Heuristic</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Iterative methods</topic><topic>Job shops</topic><topic>Libraries</topic><topic>Linear programming</topic><topic>Methods</topic><topic>Production scheduling</topic><topic>Randomization</topic><topic>Regular Paper</topic><topic>Searching</topic><topic>Software Engineering</topic><topic>Tabu search</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Ai-Hua</creatorcontrib><creatorcontrib>Zhou, Tao-Qing</creatorcontrib><creatorcontrib>Ding, Jun-Wen</creatorcontrib><creatorcontrib>Zhao, Qing-Jie</creatorcontrib><creatorcontrib>Lv, Zhi-Peng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Ai-Hua</au><au>Zhou, Tao-Qing</au><au>Ding, Jun-Wen</au><au>Zhao, Qing-Jie</au><au>Lv, Zhi-Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><addtitle>Journal of Computer Science and Technology</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>32</volume><issue>6</issue><spage>1319</spage><epage>1334</epage><pages>1319-1334</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>The p-center problem consists of choosing a subset of vertices in an undirected graph as facilities in order to minimize the maximum distance between a client and its closest facility. This paper presents a greedy randomized adaptive search procedure with path-relinking (GRASP/PR) algorithm for the p-center problem, which combines both GRASP and path-relinking. Each iteration of GRASP/PR consists of the construction of a randomized greedy solution, followed by a tabu search procedure. The resulting solution is combined with one of the elite solutions by path-relinking, which consists in exploring trajectories that connect high-quality solutions. Experiments show that GRASP/PR is competitive with the state-of-the-art algorithms in the literature in terms of both solution quality and computational efficiency. Specifically, it virtually improves the previous best known results for 10 out of 40 large instances while matching the best known results for others.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11390-017-1802-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-9000
ispartof Journal of computer science and technology, 2017-11, Vol.32 (6), p.1319-1334
issn 1000-9000
1860-4749
language eng
recordid cdi_wanfang_journals_jsjkxjsxb_e201706022
source SpringerNature Journals
subjects Adaptive search techniques
Algorithms
Apexes
Artificial Intelligence
Computer Science
Computing time
Data Structures and Information Theory
Experiments
Graph theory
Heuristic
Information Systems Applications (incl.Internet)
Iterative methods
Job shops
Libraries
Linear programming
Methods
Production scheduling
Randomization
Regular Paper
Searching
Software Engineering
Tabu search
Theory of Computation
title Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greedy%20Randomized%20Adaptive%20Search%20Procedure%20with%20Path-Relinking%20for%20the%20Vertex%20p-Center%20Problem&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Yin,%20Ai-Hua&rft.date=2017-11-01&rft.volume=32&rft.issue=6&rft.spage=1319&rft.epage=1334&rft.pages=1319-1334&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-017-1802-3&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e201706022%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973849704&rft_id=info:pmid/&rft_cqvip_id=674266058&rft_wanfj_id=jsjkxjsxb_e201706022&rfr_iscdi=true