Cognitive Power Management in Wireless Sensor Networks

Dynamic power management (DPM) in wireless sensor nodes is a well-known technique for reducing idle energy consumption. DPM controls a node's operating mode by dynamically toggling the on/off status of its units based on predictions of event occurrences. However, since each mode change induces some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer science and technology 2015-11, Vol.30 (6), p.1306-1317
Hauptverfasser: Tabatabaei, Seyed Mehdi, Hakami, Vesal, Dehghan, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic power management (DPM) in wireless sensor nodes is a well-known technique for reducing idle energy consumption. DPM controls a node's operating mode by dynamically toggling the on/off status of its units based on predictions of event occurrences. However, since each mode change induces some overhead in its own right, guaranteeing DPM's eificiency is no mean feat in environments exhibiting non-determinism and uncertainty with unknown statistics. Our solution suite in this paper, collectively referred to as cognitive power management (CPM), is a principled attempt toward enabling DPM in statistically unknown settings and gives two different analytical guarantees. Our first design is based on learning automata and guarantees better-than-pure-chance DPM in the face of non-stationary event processes. Our second solution caters tor an even more general setting in which event occurrences may take on an adversarial character. In this case, we formulate the interaction of an individual mote with its environment in terms of a repeated zero-sum game in which the node relies on a no-external-regret procedure to learn its mini-max strategies in an online fashion. We conduct numerical experiments to measure the performance of our schemes in terms of network lifetime and event loss percentage.
ISSN:1000-9000
1860-4749
DOI:10.1007/s11390-015-1600-8